MSI Z390M-S01

最終更新:2020/03/12

ATXフォームファクタのマザーボードについてはMSI Z390-S01をご覧ください。


©Micro Star International

注意事項

本ブログは、販売店とはまったく関係がありません。マザーボードの仕様、操作方法、BIOS更新等に関するお問い合わせをいただいても一切対応できません。当記事に書かれていない情報の提供は歓迎しますが、正規ユーザーしか知り得ない情報を当ブログ管理者から個人的に提供して質問者の便宜を図ることはありません。

BIOS更新は、OSやソフトウェアのアップデートとはまったく異質のもので、全員が必ず実施し、常に最新の状態を維持しなければならないという性質のものではありません。BIOSを更新したとしても、PCの性能は向上しませんし、必ずしも新型ハードウェアへの更新、換装ができるようになるわけではありません。ほとんどの場合、BIOSを更新しても何が変わったのかわからないはずです。

当記事はZ390チップセット搭載マザーボード「Z390M-S01」について個人的に調査した結果を記載しているにすぎず、当該マザーボードのユーザー全員を支援することを目的としていません。質問がある場合は、まず販売店の公式サイトをご覧いただくか、販売店に直接お問い合わせください。販売店に問い合わせてもわからなかったことは当ブログ管理者にもわかりません。当ブログの関知するところではない情報についてはお応えいたしかねますので、お問い合わせに返信しないことがあります。

「ダメでももともと、この記事を書いた人なら何か知っているかもしれないから質問してみよう」といった安易な期待にもとづく問い合わせは当ブログの記事の執筆時間を削ぐ結果にしかなりません。

以上、ご理解、ご協力のほどよろしくお願いいたします。

マウスのZ390チップセット搭載ATXマザーボード「Z390M-S01」について調べた。本マザーボードには「7C24」というモデル・ナンバーが振られている。

オンボード・コネクタ

基板上に配置されているコネクタやスロットは次の図のとおり。ストレージ用M.2スロットが2基、CNVi接続Wi-Fi/BluetoothのCRFモジュール用M.2スロットが1基搭載されている。ストレージ用M.2スロットには、SATAデバイスとPCIeデバイスの両方を使用できるけど、M2_1にSATAデバイスを接続してしまうとSATA2コネクタは無効になる。

MSI Z390M-S01のオンボード・コネクタの配置

 

Z390M-S01のオンボード・コネクタ一覧
コネクタ名 仕様 備考
LGA1151 第8/第9世代Intel Coreプロセッサ対応  
CPU_PWR1 8ピンEPS12V電源  
ATX_PWR1 24ピンATX電源  
CPU_FAN1
PUMP_FAN1
SYS_FAN1
SYS_FAN2
4ピンPWM対応ファン・コネクタ  
DIMMA1/A2
DIMMB1/B2
DDR4 SDRAM DIMMスロット Non-ECC UDIMM
最大64GB(128GB)
JAUD1 10-1ピン・フロント・オーディオ・コネクタ  
JFP1 10-1ピン・フロント・パネル・コネクタ1
(電源/リセット・スイッチ、電源/HDD LED)
 
JFP2 4ピン・フロント・パネル・コネクタ2
(ブザー/スピーカー)
 
JCI1 2ピン・シャーシ侵入検出機能コネクタ  
JRGB1 4ピンRGB LEDコネクタ 12V G R B
JTPM1 14-1ピンTPMモジュール・コネクタ  
JTBT1 5ピンThunderboltアドオン・カード・コネクタ  
JBAT1 クリアCMOSジャンパ  
JUSB1
JUSB2
10-1ピンUSB 2.0ピンヘッダ JUSB2はCNViの
Bluetoothと帯域を共用
JUSB3
JUSB4
20-1ピンUSB 3.0(USB 3.1 Gen1)ピンヘッダ  
JSPI1 シリアル・ペリフェラル・インタフェース BIOS非常書換用
M2_1 M.2スロット Key ID.M 2242/2260/2280/22110
PCIe/SATA両用
SATA使用時、SATA2
使用不可
M2_2 M.2スロット Key ID.M 2280
PCIe/SATA両用
 
CNVI_1 M.2スロット Key ID.E
CNVi RFCモジュール用コネクタ
 
PCI_E1
PCI_E2
PCI_E3
PCI Express 3.0 [x16] (CPUレーン)
PCI Express 3.0 [x1] (PCHレーン)
PCI Express 3.0 [x16] (PCHレーン [x4動作])
 
SATA1
SATA2
SATA▼3_▲4
SATA3 6GB/sコネクタ  

バック・パネル

バックパネルには、USB 2.0端子が1つもない。USB 3.0(Super Speed)のポートにUSB 2.0かUSB 1.1でも十分なUSBキーボードやUSBマウスを接続してしまうと少しもったいない気もする。Micro-ATXサイズのマザーボードを前提としたミニタワーPCケースのフロント・パネルにUSB 2.0端子とUSB 3.0端子の両方を備えていることは稀なので、外部接続が可能なUSB 2.0端子が1つもないこともあるだろう。

©Micro Star International

USB 2.0をどうしても外部接続して使いたい場合はマザーボードのピンヘッダからPCIスロット経由でリア・パネルか、3.5インチや5.25インチ・ベイに増設するフロント・パネルなどに引っ張ってくるしかない。ただ、USB 3.0はUSB 2.0/1.1と後方互換性があるので、USB 2.0でないと困る事情も特にない。ソフトウェアの認証用ドングルを常に接続しておく必要があるなどUSB接続の機器を大量に使う目的でもない限り、わざわざUSB 2.0のポートを増設することはないだろう。

フレキシブルI/O

Z390チップセットのHSIO割り当て
HSIO 用途 PCIe
1 USB 3.1 Gen1/Gen2 #1
2 USB 3.1 Gen1/Gen2 #2
3 USB 3.1 Gen1/Gen2 #3
4 USB 3.1 Gen1/Gen2 #4
5 USB 3.1 Gen1/Gen2 #5
6 USB 3.1 Gen1/Gen2 #6
7 USB 3.1 Gen1 #7 PCIe 3.0 #1 x2 x4
8 USB 3.1 Gen1 #8 PCIe 3.0 #2
9 USB 3.1 Gen1 #9 PCIe 3.0 #3 x2
10 USB 3.1 Gen1 #10 PCIe 3.0 #4
11 PCIe 3.0 #5 GbE (LAN) x2 x4
12 PCIe 3.0 #6
13 PCIe 3.0 #7 x2
14 PCIe 3.0 #8
15 PCIe 3.0 #9 GbE (LAN) x2 x4
16 PCIe 3.0 #10
17 PCIe 3.0 #11 SATA #0a x2
18 PCIe 3.0 #12 SATA #1a GbE (LAN)
19 PCIe 3.0 #13 SATA #0b GbE (LAN) x2 x4
20 PCIe 3.0 #14 SATA #1b
21 PCIe 3.0 #15 SATA #2 x2
22 PCIe 3.0 #16 SATA #3
23 PCIe 3.0 #17 SATA #4 x2 x4
24 PCIe 3.0 #18 SATA #5
25 PCIe 3.0 #19 x2
26 PCIe 3.0 #20
27 PCIe 3.0 #21 x2 x4
28 PCIe 3.0 #22
29 PCIe 3.0 #23 x2
30 PCIe 3.0 #24

Z390チップセットにはHSIOと呼ばれる統合I/Oレーンが30本あり、マザーボードのメーカーはその範囲内で製品に使用するI/Oを決めて設計する。

HSIO(High Speed I/O)は、PCI Express 3.0、SATA 3、USB 3.0/3.1、GbEなどの高速インタフェースの総称で、第6世代Intel Coreシリーズ用の100シリーズ・チップセット(Skylake)から導入された概念。以前はそれぞれのI/Oに対応するコントローラ・チップの一群を配置してそれぞれのドライバを用意しなければならなかったけど、ワンチップ化されたチップセットにすべてのコントローラを統合することでメーカーはマザーボードの設計を簡略化できるだけでなく、同世代の異なるチップセットのマザーボードの設計を流用できるようになった。また、「USB 3.0は少なくてもいいからPCI Express 3.0の拡張スロットをできるだけ多く」といった特定のI/Oに特化するような柔軟な設計もできるようになった。

Z390はPCI Express 3.0を最大24レーン使えるけど、Z390M-S01はバックパネルにUSB 3.1 Gen2(TYPE A+C)を2ポート、USB 3.1 Gen1を4ポート、オンボードにUSB 3.1 Gen1のピンヘッダを4ポート分備えているので、HSIOを10レーン使用している。つまり、PCIe 3.0 #1~#4を使用できないので、PCIe 3.0は20レーンまでしか使用できない。

USB 2.0のピンヘッダも4ポート分備えているけど、USB 2.0はもはや「高速インタフェース」ではないので、フレキシブルI/Oとは別枠でチップセットが直接制御している。いずれにせよ、帯域としてはUSB 3.0の10分の1以下なのでUSB 2.0ハブ・コントローラ・チップを挟めば計算上はHSIO 1つで10ポートは賄える。

更に、SATAを最大の4ポート使いたければ、PCIe 3.0を4レーン使えない。この時点で残りのPCIe 3.0は16レーン。

Realtek RTL8111H PCI-E GbE LANコントローラにPCIe 3.0を1レーン、M2_1及びM2_2スロットに実装したPCIe 3.0 x4 NVMe SSDはPCIe 3.0をそれぞれ4レーン占有するから、残りのPCIe 3.0は7レーン。

PCI_E3スロットをx4動作で使用することを想定すると、連続してPCIe 3.0を4レーン確保できるところはPCIe 3.0 #21~#24だけになる。PCI_E2はPCIe 3.0 x1なので、2つの拡張スロット合計で5レーン使用するので残りのPCIe 3.0は2レーン。HSIO 1レーンあたりの帯域は8Gbpsだから、USB 3.1 Gen2を規格どおりの10Gbpsで使えるようになっているとすれば、1ポートあたりHSIOを2レーン使うことになるので、もう余裕はない。

電源回路

最近のマザーボードでは電源回路の質の良し悪しでグレードの差がついたり、メーカーの電源回路に対する考え方が表れるようになった。特に、オーバークロックを試したい場合は電源回路が定格以上の出力にどれだけ耐えられるかが重要とされる。

Z390M-S01のVRMフェーズ数

PWMコントローラ・チップ「uP9521P」。拡大しているので大きく見えるけど、実際は6mm四方で目視では文字が読めないほど小さい。

VRMフェーズが不明なマザーボードのフェーズ数を調べるには、まずはPWMコントローラを探す。

マザーボード上の電源用PWMコントローラ・チップの周囲の回路には独特の特徴がある。電源回路まわりの仕様はATXフォーム・ファクタのZ390-S01と同様と推測されるので、uPIセミコンダクター社のuP9521PというPWMコントローラを使用している可能性が高い。

uP9521Pは、ミドルレンジのマザーボードでもよく使われている、Intel CPUのIMVP8電源仕様に対応しているPWMコントローラ。CPUコア用に4フェーズ分、CPUコア以外の内蔵GPUやメモリなどへの電源供給用に3フェーズ分の最大7フェーズのタイミング信号を生成できる。よく、「4+3フェーズ」などと表現されるのはこれに由来している。

Z390M-S01の上には10個のチョークコイルが並んでいて、その周囲にハイサイドとローサイドで1組プラス1個くらいのMOSFETと固体電解コンデンサがあり、それらで合計10組のVRMフェーズを構成している。PWMコントローラのタイミング信号はMOSFETをドライブするだけの能力が不十分なことが多く、MOSFETの前にはほぼ間違いなくMOSFETドライバICがある。ただ、場所の都合で基板の裏面に配置されていることも多い。

シングル・チャネルMOSFETドライバ・チップ「uP1962P」。こちらは2mm四方と更に小さい。パッケージには「FH」としか書かれていないけど、データシートと照合するとトップ・マーキングがオーダリング・インフォメーションと一致する。

MOSFETドライバもZ390-S01と同様と推測できるので、uP1962Pという12Vシングル・チャネルMOSFETドライバを使っている可能性が高い。4個のuP1962Pの下に2組のVRMフェーズを置くことで電流の経路を2倍にし、擬似的に8フェーズの同期整流回路としている。タイミング信号は4フェーズなのでリップルの低減にはつながらないけど、電流の経路を増やせばMOSFETからの発熱を分散できると思われる。残りのVRMフェーズはCPU内蔵GPU用に1フェーズ、DDR4 SDRAM用に1フェーズずつ使われている。よく自作PCパーツの新製品記事に使われている表現としては「8(4×2)+1+1フェーズ」となる。

MSI製Micro-ATXマザーボードとの比較

同じMSI製Micro-ATXフォーム・ファクタのマザーボードで、Z390M-S01と比較的仕様が似ているMAG Z390M MORTARと比較してみた。

MSI MAG Z390M MORTAR M-ATX ゲーミングマザーボード [Intel Z390チップセット搭載] MB4645

オンボード・コネクタの比較

Z390M-S01はMAG Z390M MORATRをベースにして作られたのではないかと思うくらい基板上に配置されているコネクタ類はほぼ同じ。システム・ファン・コネクタの数も同じ。USB 3.1 Gen2タイプCのフロント用コネクタがUSB 3.0(USB 3.1 Gen1)×2ポート分のピンヘッダに置き換えられているくらいしかインタフェース上の違いはない。

Thunderbolt用のコネクタが備えられていて、比較的新しい仕様のインタフェースを実装することで将来の拡張性を持っているという点では、安かろう悪かろうの廉価版OEMと馬鹿にできない部分もある。

オンボード・コネクタの比較
Z390M-S01 MAG Z390M
MORTAR
備考
LGA1151 LGA1151  
CPU_PWR1 CPU_PWR1  
ATX_PWR1 ATX_PWR1  
CPU_FAN1
PUMP_FAN1
SYS_FAN1
SYS_FAN2
CPU_FAN1
PUMP_FAN1
SYS_FAN1
SYS_FAN2
 
DIMMA1/A2
DIMMB1/B2
DIMMA1/A2
DIMMB1/B2
JAUD1 JAUD1  
JFP1 JFP1  
JFP2 JFP2  
JCI1 JCI1  
JRGB1 JRGB1  
JRGB2  
JTPM1 JTPM1  
JTBT1 JTBT1  
JBAT1 JBAT1  
JUSB1
JUSB2
JUSB1
JUSB2
USB 2.0
JUSB3
JUSB4
JUSB3 USB 3.0(USB 3.1 Gen1)
JUSB4 USB 3.1 Gen2 タイプC
JSPI1 JSPI1  
M2_1 M2_1  
M2_2 M2_2  
CNVI_1 CNVI_1  
PCI_E1 PCI_E1 PCI-E 3.0 [x16](CPU)
PCI_E2 PCI_E2 PCI-E 3.0 [x1](PCH)
PCI_E3 PCI_E3 PCI-E 3.0 [x16](PCH [x4動作])
SATA1
SATA2
SATA▼3_▲4
SATA1
SATA2
SATA▼3_▲4
 

入出力等の比較

Z390M-S01のLANコントローラがRealtek製なのに対して、MAG Z390M MORTARはIntel製のLANコントローラを搭載していて、この辺でコスト削減を図っている。一般に、LANコントローラはIntel製よりもRealtek製のほうがCPU負荷が高いと言われているけど、常時CPU負荷が高く、高速通信も継続しなければならない用途(ネットワーク対戦ゲームとか?)でもない限り不便を感じることはないだろう。

マザーボードの異常を示す「EZ DEBUG LED」と呼ばれるLED群や、MSIが「Mystic Light」と呼んでいる単純に電飾を目的としたLEDがすべて廃されているところもコスト削減の一環だろう。電飾関係はケース側面が透明でない場合はまったく役に立たないので、少しでもコストが削減できるなら、真っ先に削りたい機能ではある。

MAG Z390M MORTARに備えられているデジタル音声出力のS/PDIF出力も同様に実装されている。ただ、オーディオ・コントローラがALC892なので、S/PDIFで出力したとしてもどの程度の音質になるかは微妙なところだけど。バックパネルのUSB 2.0ポートはすべてUSB 3.0ポートに置き換えられていて、USBハブを接続すればUSB 3.0ポートをいくらでも拡張できる。MAG Z390M MORTARの単純なダウングレード版とも言えないようだ。

入出力等の仕様の比較
  Z390M-S01 MAG Z390
MORTAR
Z390M-S01
(参考)
VRMフェーズ 8+1+1 8+1+1 8+1+1
オンボード・グラフィックス DVI-I
DisplayPort
DVI-D
HDMI
DisplayPort
DVI-I
DisplayPort
オンボードLANコントローラ Realtek RTL8111H Intel I219-V Realtek RTL8111H
オーディオ・コントローラ Realtek ALC892 Realtek ALC892 Realtek ALC892
スーパーI/O NUVOTON NCT6797 NUVOTON NCT6797 NUVOTON NCT6797
USB 2.0 Type-A 0 4 0
USB 3.0 (3.1 Gen1) Type-A 4 0 4
USB 3.1 Gen2 Type-A 1 1 1
USB 3.1 Gen2 Type-C 1 1 1
音声入出力 3.5mmプラグ×5
S/PDIF出力
3.5mmプラグ×5
S/PDIF出力
3.5mmプラグ×5
S/PDIF出力
PCI-Eスチール・スロット なし あり なし
EZ DEBUG LED なし あり なし

UEFI BIOS

PCが起動した時に「Delete」キーを押しっぱなしにしているとUEFI BIOS設定画面が表示される。

mouseモデルBIOS

調査を開始したのが遅かったので、過去のBIOSバージョンの一覧はわかったけど、イメージ・ファイルの実体を入手することはできなかった。2020年2月現在では、E7C24IM0.103からE7C24IM0.107までのBIOSを置き換えるためのバージョンであるE7C24IM0.108と、E7C24IM0.108以降のBIOSを置き換えるためのE7C24IM0.10Jのみ入手できる。

Z390M-S01のマウスバージョンBIOS一覧
BIOS MRC CPUID Rev. 備考
E7C24IM0.103 不明 不明 不明 削除済
E7C24IM0.104 不明 不明 不明 削除済
E7C24IM0.106 不明 不明 不明 削除済
E7C24IM0.107 不明 不明 不明 削除済
E7C24IM0.108 0.7.1.95 906EA AA  
906EB AA  
906EC A2  
E7C24IM0.10A 不明 不明 不明 削除済
E7C24IM0.10B 不明 不明 不明 削除済
E7C24IM0.10D 不明 不明 不明 削除済
E7C24IM0.10H 不明 不明 不明 削除済
E7C24IM0.10J 0.7.1.112 906EA CA 同上
906EB CA 同上
906EC CA 同上
906ED CA 追加

マイクロコード(CPUID)の追加

新BIOSの更新内容は、公式には「動作の安定性を向上した」というもので、2019年6月現在で日本未発売の第9世代Coreプロセッサ新モデル用のマイクロコードや、当初の仕様を超える大容量メモリ・モジュールへの対応など、互換するハードウェアが追加されたというものではないとされていた。しかし、UEFITool NE A55を使ってBIOSイメージ・ファイルを解析してみたところ、CPUID「906ED」のマイクロコードが追加されていた。

CPUIDはCPUのモデルを特定するものではなく、マイクロアーキテクチャを特定するものなので、ある個体のCPUがどのCPUIDに属するかはS-specを確認しないと正確なところはわからない。S-specはヒートスプレッダに刻印してあるけど、BOX版の場合はパッケージにも書いてある。

おおまかに分類すると、906EA 及び 906EB が第8世代Coreシリーズ・プロセッサで、906EC 及び 906ED が第9世代Coreシリーズ・プロセッサなんだけど、ナンバリングでは第9世代のCore i5-9400FのCPUIDが906EAだったり、Core i3-9350KのCPUIDが906EBだったりする。i5-9400FはU0ステッピング、i3-9350KはB0ステッピングといって、第8世代の技術や設計を流用しているためなんだけど、正確に識別できないので第8世代対応マザーボードのBIOS更新が必要ないというわけでもない。第9世代にも初期生産型のP0ステッピングと脆弱性などを改善したR0ステッピングの2種類があり、同じi9-9900Kやi7-9700KでもR0ステッピングで製造されているものはBIOSの更新をしないと正常に動作しない。

免責事項

念のため釘を刺しておくけど、CPU換装はマウスの保証規定に反する改造行為なので、本記事を根拠としてBIOSが対応したと判断してCPUを換装する場合は完全に自己責任となる。換装中や換装後に発生した問題についてはマウスをはじめ誰も助けてくれないし、上記の表はBIOSイメージの調査結果を書き留めているに過ぎないので換装後の動作を保証するものではない。換装後に動作しなかったり、Windowsのデジタル認証が解除されるような事態に陥ってしまったとしても問い合わせや苦情については一切受け付けないのでご承知おき願いたい。

特に、R0ステッピングのCPUを既存のシステムに導入した場合、BIOSが対応していてもWindowsカーネルが新ステッピングに対応できないために正常に動作しないことがインターネットの記事で報じられている。安定運用にはWindowsのクリーン・インストールが必須という厄介な代物になってしまった。最近のOEM版Windowsはインストール・メディアが付属しないので再インストールの方法はひとつではなく、事前準備も含めてその手順も決して簡単とは言えない。イーサネットもまともに使えない状態でドライバのインストールから始めなければならないので、インターネットに接続できる2台目のPCがないと、怖くてOEM版Windowsのクリーン・インストールなんてできない。システムをゼロから再構築する自信がない人は、悪いことは言わないので安易なCPU換装はやめておいたほうがいい。CPUを自由に換装したり、気軽にOSを再インストールしたりしたいのであれば、最初からPCを自作するべきだ。

MRCリビジョン更新

32GBメモリ・モジュールをDIMMスロットに装着してみて認識するか確認すれば一番手っ取り早いんだろうけど、2019年6月現在では、日本ではECC無しでアンバッファードDIMMのDDR4 32GBメモリ・モジュールは入手できない状態にあった。2020年に入ってからはSamsung製以外のデュアル・ランク32GB UDIMMの製品も増え、2万円前後で入手できるようになったので、128GBメモリ環境構築の敷居は低くなった。

1枚で32GBのSamsung純正DDR4メモリが店頭販売中、実売2.5万円

Samsung純正モジュールを採用した容量32GBのDDR4メモリ「M378A4G43MB1-CTD」が、パソコンショップ アークで販売中だ。

3.7万円から買えるSamsung純正のDDR4 32GBメモリー

128GB物理メモリ環境構築可能情報

MSIの公式サイトでZ390M-S01のBIOSに関する正式な情報を入手できたので、MRCリビジョンが0.7.1.95以降になっているBIOSはJEDEC規格32GBメモリ・モジュールを認識する可能性が高くなった。

自分で検証していないので保証はできないけど、MRCリビジョンが0.7.1.112のBIOSを使用している場合において、Crucialの「CT32G4DFD8266(DDR4-2666 32GB 2-Rank UDIMM)」を4枚使用した時、128GBで認識し、Windows 10のシステム情報でも「実装メモリ(RAM)」に「128GB」と表示されたという有志からの情報を得ている。認識していることと、実際のメモリ空間としてすべてのメモリ・アドレスを使用できるかどうかは関係がないので、各自の実運用での検証は必要だけど、少なくとも、モジュールをまったく認識しないということはなく、メモリ・モジュールへの投資そのものは無駄にはならないことだけは間違いない。

iiyamaモデル/o’zzioモデルBIOS

上記のBIOSの他に、マウスがPC DEPOTブランドの「o’zzioモデル」として出荷しているPCでもZ390M-S01を使っているけど、「mouseモデル」ではBIOSバージョンが「E7C24IM0.10J(イチ・ゼロ・ジェイ)」などとなっているのに対し、「o’zzioモデル」では「E7C24IM0.1OJ(イチ・オー・ジェイ)」となっている。末尾3桁の中央の桁は出荷先のブランドを示していることは容易に推測できる。おそらく、iiyamaモデル用のBIOSは「1IC」などのように中央の桁が「iiyama」の頭文字である「I」になっている可能性が濃厚。iiyamaモデルというのはパソコン工房で販売しているBTOパソコンのこと。

ただ、iiyamaモデルのBIOSイメージ・ファイルの入手が困難であるため、詳細は不明。上記のmouseモデルBIOSとの相違点などもわからないけど、おそらくPOST画面で表示されるフルスクリーン・ロゴの画像が差し替わっている程度の違いだと推測できる。

MSIバージョンBIOS

Z390M-S01はOEMマザーボードなので、正式にMSIから公開されている情報はないと思い込んでいたけど、偶然見つけた中国語版のWEBサイトに情報が掲載されていて、BIOSのバイナリ・ファイルも配布されていた。マウス向けに出荷しているBIOSとは別に、MSIで独自にBIOSを並行ビルドして配布しているようだ。

Z390M-S01

MSIが正式に配布しているBIOSなので、Z390M-S01のBIOSをこれらに書き換えても問題なく動作はするだろう。中国語版のWEBサイトで配布されているものだけど、BIOSのインタフェース言語は英語が基本なので、設定項目が読めないということもないだろう。しかしながら、MSI版への書き換えは推奨しない。販売店からリリースされたものでないBIOSへの書き換えなどはやらないほうが無難だ。

更に言えば、マウスから出荷されているPCのZ390M-S01はM-FLASHが無効化されているので、どうやってMSI版のBIOSに書き換えるのかは各自で考えてもらうより他にない。マウスが配布しているBIOSはM-FLASHを使わずに書き換えるので、MSI版のBIOSに書き換える方法もあるだろうけど、他製品のBIOSを間違って書き込んでしまわないようにするための安全装置、様々なセキュリティやプロテクトを解除するなど、ハッカーのような知識が必要で、はっきり言って楽ではない。

また、BIOSの書き換えに伴ってOEM版のOSの起動に必要な情報も書き換えてしまい、別のマザーボードに変わってしまったと判断されてWindowsのデジタル認証が通らなくなってしまう可能性もあるので、どうしてもやりたいならば、そういったリスクがあることも承知の上で自己責任で試してほしい。

Z390M-S01のMSIバージョンBIOS一覧
BIOS 更新内容 MRC CPUID Rev. 備考
E7C24IMS.100
(7C24v10)
  • New BIOS Release
0.7.1.80 906EA 9A  
906EB 9A  
906EC 9E  
E7C24IMS.110
(7C24v11)
  •  Improve memory compatibility.
  • Update Micro code.
0.7.1.80 906EA 9A 同上
906EB A4 変更
906EC A2 変更
E7C24IMS.130
(7C24v13)
  • Add TG setting
  • Optimize M.2 Genie.
  • Improve S4 resume issue.
  • Improve Intel 750 nvme compatibility.
0.7.1.95 906EA AA 変更
906EB AA 変更
906EC A2 同上
906ED AA 追加
E7C24IMS.140
(7C24v14)
  • Update RST driver to 17.2
  • Update Microcode to support upcoming cpu.
0.7.1.95 906EA AA 同上
906EB AA 同上
906EC A2 同上
906ED B0 変更
E7C24IMS.150
(7C24v15)
  • Update RST driver to 17.5
  • Update Microcode.
0.7.1.110 906EA B4 変更
906EB B4 変更
906EC BE 変更
906ED BE 変更
E7C24IMS.160
(7C24v16)
  • Update Microcode.
  • Improved TPM function.
0.7.1.112 906EA CA 変更
906EB CA 変更
906EC CA 変更
906ED CA 変更

よくある質問

Q1. 自分のPCのBIOSと、記事記載のBIOSとはバージョン番号が異なるが、どちらが新しいBIOSか?

A1. マザーボードの型番は同じでも、メーカーの判断で改良やマザーボードに採用されているハードウェアの変更等に伴ってBIOSをまったく異なるものに変更することがある。情報はナマモノであり、記事に書いたそばから陳腐化していくものなので、記事記載のBIOSバージョンが最新とは限らない。枝分かれしたBIOSについては調べようがないため、バージョン番号がまったく異なる場合、どちらが新しいかはわからない。なお、記事記載のBIOSバージョンに誤記はない。


Q2. 最新のBIOSをダウンロードできるWEBページのURLを教えてほしい。

A2. リテール版として一般に販売されているマザーボードとは異なり、Z390M-S01はOEMマザーボードであり、誰でもアクセスできる場所にBIOSが公開されているわけではない。マウスコンピューターから購入したPCの場合、ダウンロードのためには「U1~」から始まるシリアルナンバー(下図参照)をサポートページで入力することが必要で、サーチエンジンによる検索ではヒットしない場所にある。パソコン工房から購入したPCの場合、シリアルナンバーが「U3~」か「U4~」で始まっていたり、採番の方法が異なるため、同ページに入力してもダウンロードページが開けるとは限らない。

©Mouse Computer Japan

Q3. どこを探しても最新版のBIOSが見つからない。BIOSのバイナリ・ファイルを電子メールで送ってほしい。または、代理してBIOSを公開してほしい。

A3. 購入元の販売店からBIOSの更新を指示されていない場合、BIOSは更新しなくて良いという判断だと理解するべき。無理に最新版のBIOSを探し当てる必要はない。また、マウスコンピューターから正規の手段で購入したPCかどうか当ブログでは判断できないため、BIOSのバイナリ・ファイルを個別に送ることはない。BIOSを更新したことでトラブルが発生したとしても当ブログは責任を持てない。

また、BIOSが更新されるたびにバイナリ・ファイルを希望者全員に送付しなければならなくなるため、現実的ではないし、当ブログはそういったサービスを提供しない。不特定多数がアクセス可能な場所にBIOSを公開することもない。初心者が不用意にBIOSを更新しようとしてトラブルが続発する事態のほうが問題と考えている。

関連記事

参考資料

参考記事

DAIVのCPUクーラーを忍者五に換装

最終更新:2019/10/05

2019年1月頃に買ったマウスのDAIV-DQZ530S1P-EX9にはIntel Core i9-9900Kが搭載されている。出荷時に搭載されていたCPUクーラーではi9-9900Kを相手にするには冷却能力不足なのではないかと常々思っていたことと、CPUの負荷が上がると不定期にファンから轟音を出すため、ストレスが溜まっていた。元気な時はまだいいけれど、体調が良くない時や疲れている時は不意に大きくなる騒音が辛く感じる。そこで、CPUクーラーの換装を計画した。

免責事項

お決まり文句だけど、たかがCPUクーラーの換装といえど、BTOパソコンの改造行為にあたるため、換装後はメーカーの保証は受けられなくなる。換装時にミスがあってCPUやCPUソケット(マザーボード)を破損してしまったとしてもそれは自己責任となる。本記事を参考にしてCPUクーラーを換装を試みて失敗したとしても当ブログは一切責任を負えないので了承のうえ、活用いただきたい。

現用CPUクーラーの性能

今回換装する92mmサイドフロークーラー。4本のヒートパイプを備え、まったく冷えないわけではないけど最大3,800rpmで回るためかなりの轟音。

右の写真が今回換装する対象のCPUクーラー。どうやら、マウス・コンピューターのオリジナル設計のクーラーらしいけど、とにかく情報が少ない。少なくとも、第6世代Core iシリーズ・プロセッサの頃にはNEXTGEARやLITTLEGEARのようなマウスのBTOパソコンに採用されていたもので、設計そのものは新しくない。

本当に銅製かどうかはわからないけど銅色の4本ヒートパイプを備えたヒートシンクの前に7枚のファンブレードを備えた92mmファンがネジ留めされている。測ったみたところ、ファンの厚さは一応25mmあったけど、フレームがないせいか目測だともう少し小さく見える。

ヒートシンクはマザーボードに取り付ける時の作業性を良くするために後背部が絞り込まれているので、ヒートシンクの体積とフィンの表面積を小さくする要因になっているように見える。

いずれにせよ、92mmサイズのファンとそれと同程度の大きさのヒートシンクでi9-9900Kは荷が重すぎるだろうな、ということは容易に想像がつく。DAIVはプロフェッショナルのクリエイターの要求にも応えられるパソコンを売り文句のひとつにしているけど、CPUがハイエンドでもCPUクーラーがエントリーレベルのものではその性能をプロフェッショナルが満足するレベルで発揮できるとは思えない。

冷却性能(電力制限95W)

とりあえず、現用CPUクーラーの力量を整理しておく。現用品を取り外してしまってからではデータ採りも容易にできなくなるので、比較対象にする記録を残しておかないと後悔の元になる。

まずは、短期電力制限(Short Duration Power Limit)を200W、長期電力制限(Long Duration Power Limit)を95W、つまり定格運用の設定にしてLightWave 2015のレンダリングで負荷試験をしてみる。LightWaveの起動直後とシーン・ファイルのロード直後はCPUの負荷が安定しないので、しばらくアイドリングしてからグラフの1:00ちょうどのタイミングでレンダリング開始した。計測と記録はHWiNFO64で行った。室温は夏場だったので30℃前後でやや高め。

水色:CPUコアクロック 黄色:CPUパッケージ電力 赤色:CPUパッケージ温度

グラフを見ると、1:00の直後からCPUのコアクロックが4.7GHzのあたりで平坦化、ラジオシティの演算が終わったところで8コア16スレッドでのレンダリングが始まり、消費電力が急上昇する。電力が高い状態は長くは続かないので、すぐに95Wまで下がって安定する。95Wの電力制限がかかっている間はコアクロックは4.1~4.2GHzで推移する。

肝心のCPU温度は電力が上昇した時に95℃まで上がっているけど、その後は75℃前後で推移している。熱設計電力(TDP)である95Wに制限して定格運用する分には現用品のCPUクーラーでもとりあえず冷やせていることにはなる。ベースクロックは3.6GHzだから、これでもターボブーストはかかっていることにはなるけど、i9-9900Kを買ってこの結果で満足する人は少ないだろう。

冷却性能(電力制限200W)

次に、短期電力制限(Short Duration Power Limit)を200W、長期電力制限(Long Duration Power Limit)も200W、つまりオール・コアが定格最大の4.7GHzで張り付く設定にしてLightWave 2015のレンダリングで負荷試験をしてみる。他の条件は上の試験と同じ。

グラフを見ると、1:00の直後からCPUのコアクロックが4.7GHzのあたりで平坦化、8コア16スレッドでのレンダリングが始まった後、消費電力が150Wを超えた状態で推移する。電力が150Wを超えている間はコアクロックは4.7GHzで推移するけど、後半からサーマル・スロットリングがかかり始め、4.6GHzまで低下しているところが現れ始める。

CPU温度は右肩上がりに上昇し、ほぼ100℃に近い温度で推移している。定格最大ではあるものの、CPUのパワーを最大限引き出そうとすると現用のCPUクーラーではまったく冷やせていることにはなる。Tjmaxの100℃に近くなった時にCPUの破損を防ぐための安全機構が有効になっていなければCPU温度は際限なく上がっていってしまうことを表している。クーラーのファンが3,800rpmで回って一生懸命風を送ってはいるんだろうけど、ヒートシンクが受け止められる熱の容量が限界に達してしまっていて風を当てたくらいでは間に合っていないと予測される。安全機構が働いているから即座にCPUの破損につながるわけではないけど、こんな状態で常用していたらCPUの寿命は確実に短くなっていくだろう。

VRMを流れる電流はCPU電圧が1.3Vとして、155Wの時で119.2Aくらい。Z390-S01の8フェーズのVRMでこれを受け止めるわけだから、1フェーズあたり14.9Aくらい。MOSFETの損傷を心配するレベルではないけど、どうせOEMマザーボードなので壊れたところでそれほど惜しくはない。

CPUクーラーの取り外し

CPUクーラー本体の取り外し

何はともあれ、CPUクーラーの本体を取り外す。スプリング・スクリューにはなっていたけど、トップフローのCPUクーラーによくあるような取り付け方法で、4点留めになっている。グリスが固着しているようなこともなかったので簡単に取り外せた。

CPUクーラーを取り外した直後のCPU。ソケットのカバーでCPUのヒートスプレッダを押さえているのでクーラーを取り外したと同時にCPUも一緒に外れてしまうようなことはない。
CPUクーラーの受熱ベース側。銅色のヒートパイプと銀色の受熱ベースの間に溝があって、そこに集中してグリスが入り込んでいるのがわかる。


CPUグリスにはダイヤモンドグリスが使われているはずだけど、見た目ではわからない。ヒートスプレッダを若干はみ出しているものの、厚すぎずもなく、少なすぎもせず、お手本のような塗り方だった。さすがにBTOパソコンを長く作っているマウスだけあって、組み立て作業者の技能は高いようだ。CPUに残っているグリスに縦縞が入っているように見えるのは、CPUクーラーの受熱ベース側に凹凸があって、その溝の部分だけグリスが厚くなっているため。

まだ購入してから7ヶ月くらいしか経っていないので、まだグリスが乾燥するまでにはなっていなかった。実際のところ、グリスが乾燥すると冷却性能が極端に低下するというのは一種の民間信仰みたいなもので、CPU側のヒートスプレッダとクーラー側の受熱ベースプレートの目に見えないくらいの凹凸を埋め合わせられていれば十分なものらしい。もともとシリコンを基剤にした普通のグリスは金属に比べれば熱伝導率が極めて悪いもので、シリコンが乾いてしまったくらいならそれほど性能に影響が出るものではないそうだ。もちろん、オーバークロック用の特殊なグリスなら短期間での冷却性能の悪化というのは起こりえるのかもしれないけど。

CPUグリスの拭き取り

リムーバーをあらかじめ買っておいたので、ウェスに適量含ませてグリスを拭き取る。グリスを綺麗に拭き取り終わるとi9-9900Kのヒートスプレッダが見えてくる。そんなに頻繁にお目にかかれるものでもないし、すぐにまたグリスを塗って塞いでしまうので、記念撮影しておく。R0ステッピングはまだ出ていなかった頃のものなので、S-Specは当然「SRELS」(P0ステッピング)になっている。

ちなみに、リムーバーはできれば電子機器用のものがいいけど、無水エタノールでも代用できる。無水エタノールは一般の薬局でも売っているので入手しやすいのが特徴。ただ、茶色の薬瓶に入った500mlの大瓶しかなくて小瓶がなかったりするので、まともに買うと結構な出費になる。油性マジックで書いてしまったラクガキも消せるので清掃用品としても役に立つんだけどね。

バックプレートの取り外し

次に、CPUクーラーのバックプレートを取り外す。DAIVのケースは設計があまり新しくなく、CPUのバックプレートにあたる位置のメンテナンスホールのカットアウトの面積が小さい。バックプレートがほんのわずかだけどカットアウトの裏側に回り込んでしまっているので、マザーボードを一度取り外してからでないとCPUクーラーの換装はできない。

BTOパソコンはパーツの交換を前提としていないので、ケースの設計を改善する必要なんてないと考えているんだろうけど、とにかく作業性が悪い。マウスのBTOパソコンを二度と買いたくなくなるくらい中途半端な設計だと思った。

このバックプレートがまた取り外しにくくて、組み立て時の作業性を良くするために両面テープでマザーボードの裏に貼り付けられていた。トップフローのCPUクーラーなど軽量級のヒートシンクを使う製品の場合は作業性を良くするためにバックプレートを両面テープで仮止めしてからクーラー本体を取り付けるようになっているものも多い。ただ、自分で取り付けたものではないので両面テープの位置を把握していないため、とにかく力任せに引き剥がすしか方法がない。

忍者五への換装

現用のCPUクーラーの部品を全部取り外し終われば忍者五の取り付けにかかれる。まずはバックプレートを取り付けるわけだけど、できるだけ手間を減らしたかったので、マザーボードのネジを8本すべて外した上で基板を少し浮かせた状態で作業しようとした。

忍者五のバックプレートにはマウンティング・プレートを取り付けるためのネジと、そのネジをCPUソケットの規格に合わせた位置に固定し、バックプレートがマザーボードの裏面を傷つけないようにするためのゴム製のクリップがあらかじめ組み付けられている。ところが、このクリップがとても外れやすく、そのうちひとつが作業中に脱落してケース内で一時行方不明になった。ケースを立てたままでのCPUクーラー換装作業は難易度が高いと言われる理由をようやく理解した。脱落したクリップは5.25インチベイの中に落ちていたのをすぐに発見できたのでまだ良かったけど、紛失したり、簡単に拾えないところに落ちていたら面倒なことになっていた。

バックプレートの取り付けさえできてしまえば後は楽勝だろうと思ってマザーボードを再度ネジ留めしてしまったのが良くなかった。忍者五はとにかくヒートシンクが大きく、取り付けにひと苦労した。マウンティング・プレートのネジ穴がヒートシンクのフィンが邪魔でほとんど見えないので、ドライバーでスクリューを回した時の手の感触だけを頼りに手探り状態でヒートシンクを固定するのはなかなか難易度が高かった。少し締め過ぎた感もある。

マザーボードを裸の状態で組み立てられれば苦労はしないんだろうけど、今回はすでに組んであるBTOパソコンの換装なので、作業領域がとにかく狭かった。ScytheのCPUクーラーはヒートシンクにワイヤークリップでファンを取り付けるのが伝統だけど、ヒートシンクを先に取り付けてしまうと天板側のワイヤークリップの取り付け、取り外しが困難になる。ヒートシンクに先にファンを取り付けてからCPU上に設置することになるので、ファンを交換したくなったらヒートシンクごと取り外してからでないと作業できない。

忍者五のヒートシンクとケースのトップの間にはほとんど隙間がない。指を入れてもワイヤークリップには届かないし、細い工具を差し入れたとしてもワイヤークリップを引っかけるのに必要なテンションはかけられない。

そんなわけで、標準装備の800rpmのファンでの冷却性能もせっかくだから調べてみようと思ってたんだけど、ファンを交換するたびにヒートシンクを取り外さないといけないので面倒くさくなった。重量級のヒートシンクを何度もグリグリやっているうちにCPUソケットのピンを曲げてしまうのではないかと心配になったのもある。

ファンの換装

NF-P12 redux – 1700 PWMのパッケージ。ケースファンにここまでしなくてもいいのでは、と思うくらい格好いいデザインの豪華な箱に入っている。

忍者五は標準構成では800rpmの低速回転のファンを2個使うようになっているんだけど、さすがにi9-9900Kを冷やすのに800rpmでは心もとなく感じた。忍者五のパッケージに書いてあった800rpmファンの仕様を参照すると43.03CFMなのでケースファンとしての風量はそこそこだけど、CPUクーラーの冷却ファンとして使うには物足りない。静音性を重視して800rpmにしたのだろうし、同回転数でPWMファンというのもScytheの製品の中でもレアなんだけど、素直に1200rpmのファンでも良かったような気もする。

そこで、吸気側のファンを自作PCユーザーに定評のあるオーストリアのNoctua製ファンに換装した。Noctuaのケースファンはおおまかに風量重視型と静圧重視型の2種類に分類できるんだけど、回転数の高いものを選べば風量はある程度稼げるので、静圧重視型にした。

Noctuaのケースファンというと、NF-A12x25が有名だけど、ケースファンとは思えないほどの価格なので、廉価版の「NF-P12 redux – 1700 PWM」を選んだ。四隅の防振ラバーパッドがついていなかったり、回転数を調整するLNA(Low-Noise Adapter)と呼ばれる変換ケーブルがついていなかったりしてコストダウンしてある。Amazonで買うと高いけど、PCパーツ・ショップから購入すれば1700円くらいで買える。日本国内の輸入販売はScytheが担当している。

Noctua NF-P12 redux-1700 PWM - high-performance quiet 120mm fan [NF-P12 redux-1700PWM]
posted with amazlet at 19.09.07
参考価格: ¥ 2,430 (2019-09-07)
Noctua

排気側のファンはKazeFlex120 RGB PWM 1200rpmを使った。RGBである必要はまったくないんだけど、無限五 TUFで使わなかったファンがあったので、それを単に流用しただけ。写真に写っているファンの四隅が黄色なのはTUFゲーミングのブランドカラーであるため。どうせサイドパネルで塞いでしまうので、色はどうでもよかったのでそのままにしてしまったんだけど、忍者五に付属していたファンの防振ラバーパッドと交換しても良かったかな、と後になって思った。

吸気側のファンと排気側のファンの回転数が異なるので、忍者五に付属していたY字分岐ケーブルは使用しなかった。個別に制御できたほうが何か問題があった時に対処しやすい。そもそも、マザーボードのファン・コネクタは余り気味なので、NF-P12 redux – 1700 PWMを「CPU_FAN1」に、KazeFlex120 RGB PWM 1200rpmを「PUMP_FAN1」に接続した。

二重反転ファン

NF-P12 redux – 1700 PWMが反時計回り、KazeFlex120 RGB PWMが時計回りに回転するので、二重反転ファンを構成できる。ファンから出る風は、回転するプロペラから出るものである以上、完全に直進するものではなく、多少は捻れている。風が捻れていると風速のベクトルのうち、ヒートシンクのフィンに垂直方向に当たる成分があることになるので、フィンの間で乱流が起こって渦を巻き、排気方向へのエアーの抜けが悪くなる。そこで、吸気側のファンで反対方向の捻りを加えてやることで風の直進性を良くする効果を狙う。また、同じ方向に回るファンを二重に設置すると共振して騒音が大きくなる傾向にあるので、騒音対策にもなる。

一般的な製品では反時計回りのファンがほとんどなんだけど、Scytheの製品は伝統的に時計回りだった。最近、スリムタイプの15mm厚のケースファンが発売されたんだけど、風魔弐で使った薄型プロペラの金型を転用しているようで、スリムタイプは反時計回りに変わっている。

品名 回転数 風量 静圧
吸気側 Noctua NF-P12 redux – 1700 PWM 1,700 rpm 70.74 CFM
(120.2 m3/h)
2.83 mmH2O
排気側 Scythe KazeFlex120 RGB PWM 1,200 rpm 51.17 CFM
(86.9 m3/h)
1.05 mmH2O

忍者五の性能

取り付けが終わったのでとりあえずサイドパネルを閉じる前に電源を入れてみた。NF-P12 redux – 1700 PWMには防振ラバーパッドがついていないのでどうなるか少し心配だったけど、防振しないといけないほどNoctuaの加工精度は悪くなかった。ベアリングも良い物を使っているようで、軸がぶれているような感じはまったく見受けられなかった。

冷却性能(電力制限95W)

まずは、短期電力制限(Short Duration Power Limit)を200W、長期電力制限(Long Duration Power Limit)を95W、つまり定格運用の設定にしてLightWave 2015のレンダリングで負荷試験をしてみる。室温は30℃前後でほぼ同じ。

忍者五に換装後のCPU温度は95Wの電力制限がかかっている間は63℃くらいで推移している。取り外したCPUクーラーに比べて12℃ほど下がった。

冷却性能(電力制限200W)

次に、本丸である定格最大の4.7GHzでの冷却性能を測る。短期電力制限(Short Duration Power Limit)を200W、長期電力制限(Long Duration Power Limit)も200Wの設定でLightWave 2015のレンダリングで負荷試験をしてみる。他の条件は同じ。

忍者五に換装後のCPU温度は8コア16スレッドでのレンダリングが始まったあたりから約80℃くらいに抑えられている。当然ながらサーマル・スロットリングも働かず、8コアすべてのコアクロックが4.7GHzに張り付き、ほぼ完全に平坦化している。室温が30℃くらいあったことを考えると、真冬はもう少し余裕が出るのではないかと期待してしまう。

少し意外だったのが、8コア16スレッドでのレンダリングが始まった後、消費電力が145W前後で推移していて150Wを超えなくなったこと。コアクロックは4.7GHzになっているので処理速度に差が生じるとは考えられないし、消費電力が高いほどCPUの能力が良くなるわけでもない。

試しに、ロード・ライン・キャリブレーション(Load Line Calibration、LLC)を「Auto」からもっともアグレッシブな設定で下がろうとする電圧をむしろ上げようとする「Mode 1」に変更したみたらレンダリング中に画面が真っ黒になってPCがダウンしてしまった。そこで、電圧が一定になるように維持する「Mode 4」では消費電力が170Wを超えるようにはなったものの、CPUの発熱が尋常ではなくなり、忍者五でもCPU温度が100℃近くになってしまった。LLCは「Auto」にしておくのが無難なようだ。

冷却性能まとめ

上記の結果からCPU温度の推移だけ抜き出したのが次のグラフ。2:00~3:00あたりがCPUにフルロードがかかっている部分。

何はともあれ、大型のヒートシンクと大口径のファンを使ったことで17℃もの改善がみられ、余裕をもって4.7GHz常用ができるようになった。発熱の問題が解消されたことで心配事がなくなり、スッキリした。4.7GHzで回せない鬱憤も晴らせたので精神衛生的にも好ましい効果と言え、結果的には換装してよかった。

定格最大4.7GHzのパフォーマンス

LightWave 2015でのレンダリング時間は約10秒ほど短縮できた。率にして9%くらいの改善。2分切りも期待したけど、あとわずがのところで1分台には届かなかった。ただし、これは一番結果が良かった時のスクリーンショット。原因は不明なものの、ある試験では条件によってはレンダリング時間があまり変わらないという結果もあった。メモリがDDR4-2666なのも影響しているかもしれないけど、忍者五はメモリとの干渉クリアランスが厳しく、背の高いヒートスプレッダを装備したオーバークロックメモリを搭載して試験するのは難しい。

LightWave 2015
CPU 総レンダリング時間 パフォーマンス 備考
Core i7-860 685.2秒(11分25秒) 1.00倍 DDR3-1333
Core i7-9700K 148.9秒(2分28秒) 4.60倍 DDR4-3600
Core i9-9900K(95W) 132.4秒(2分12秒) 5.17倍 DDR4-2666
Core i9-9900K(200W) 121.1秒(2分1秒) 5.66倍 DDR4-2666

換装後

忍者五に換装した後のDAIVケースの内部の全体写真。マザーボードがZ390-S01ならとりあえず取り付けることは可能なので、ヒートシンクの大きさが気になって躊躇している人には参考になるかもしれない。CPUソケットの位置があと1cm左だったらリア側のケースファンと干渉してしまうところだったので、ほっとしているところ。

CPUまわりの設計がほぼ同じのMSI「MPG Z390 GAMING PLUS」や「Z390-A PRO」でも問題なく設置できるだろう。

付属品の不備

忍者五に付属していたワイヤークリップ。上のものが本来使うべきワイヤークリップで、下のものが間違って入っていたと思われるワイヤークリップ。よく見ると、縦方向のワイヤーの長さが違う。

付属品を袋詰めした時のミスだと思うんだけど、ワイヤークリップが1本だけサイズの異なるものが入っていた。ファンを取り付ける時にかなりの強さで引っ張ってもクリップが一向にヒートシンクのフィンに引っかからないのでおかしいと思って確認したら、他のクリップと長さが異なっていた。

おそらく、風魔弐の15mm厚ファン用のワイヤークリップか、改良前の旧仕様のものだと思うんだけど、長さが少し違うだけで片方だけ見た時に判別が困難な上、型番を書くところもないただの針金なので、仕様が違うものが紛れ込んでいるのに気が付かずに袋に入れてしまったのだろう。機能上必要なくても判別のためにクリップの形をわざと変えるとか、もう少し工夫が必要ではないかと思った。

たまたま無限五をデュアルファンにするために予備でついていたワイヤークリップを持っていたのでなんとか事なきを得たけど、忍者五が初めて購入したScythe製のCPUクーラーだったらファンの取り付けができずに詰んでいたところだった。付属品はよく確認したほうがいいようだ。

Scytheに連絡すればワイヤークリップくらいなら郵送で交換してくれそうな気はするけど、余計な手間はできるだけ避けたいのはお互い様なので、風魔弐などの25mm厚のファンを使わないラインナップを増やした時やクリップの設計を変更した時にパーツの管理方法も併せて考えて欲しかったところだ。

関連記事

MSI Z390-S01

最終更新:2020/03/10

Micro-ATXフォームファクタのマザーボードについてはMSI Z390M-S01をご覧ください。


©Micro-Star International

注意事項

本ブログは、販売店とはまったく関係がありません。マザーボードの仕様、操作方法、BIOS更新等に関するお問い合わせをいただいても一切対応できません。当記事に書かれていない情報の提供は歓迎しますが、正規ユーザーしか知り得ない情報を当ブログ管理者から個人的に提供して質問者の便宜を図ることはありません。

BIOS更新は、OSやソフトウェアのアップデートとはまったく異質のもので、全員が必ず実施し、常に最新の状態を維持しなければならないという性質のものではありません。BIOSを更新したとしても、PCの性能は向上しませんし、必ずしも新型ハードウェアへの更新、換装ができるようになるわけではありません。ほとんどの場合、BIOSを更新しても何が変わったのかわからないはずです。

当記事はZ390チップセット搭載マザーボード「Z390-S01」について個人的に調査した結果を記載しているにすぎず、当該マザーボードのユーザー全員を支援することを目的としていません。質問がある場合は、まず販売店の公式サイトをご覧いただくか、販売店に直接お問い合わせください。販売店に問い合わせてもわからなかったことは当ブログ管理者にもわかりません。

最近、こういった問い合わせが増えていますが、この注意事項を読んでおられないと判断される場合でも、当ブログの関知するところではない情報についてはお応えいたしかねますので、お問い合わせに返信しないことがあります。

「ダメでももともと、この記事を書いた人なら何か知っているかもしれないから質問してみよう」といった安易な期待にもとづく問い合わせは当ブログの記事の執筆時間を削ぐ結果にしかなりません。

以上、ご理解、ご協力のほどよろしくお願いいたします。

マウスのZ390チップセット搭載マザーボードに採用されている「Z390-S01」

マウスのZ390チップセット搭載ATXマザーボード「Z390-S01」の詳細について調べた。基板には「7C22 – VER:1.0」というモデル・ナンバーが振られている。

オンボード・コネクタ

基板上に配置されているコネクタやスロットは次の図のとおり。ストレージ用M.2スロットが2基、CNVi接続Wi-Fi/BluetoothのCRFモジュール用M.2スロットが1基搭載されていて、一見、豪華仕様のように見える。PCH配下のPCI Expressレーン数は最大24と拡張性は十分なように思えるけど、Z390チップセットのフレキシブルI/Oだけで制御しきれる入出力(HSIO)の数は30レーンと限度がある。そのため、M.2スロットを2つとも使ってしまうとM.2スロットが優先され、SATAポートは4ポートに制限されてしまう。Z390チップセット以外に補助コントローラ・チップを搭載していないマザーボードではミドルレンジでも大体同じような制限があるので、廉価版OEMマザーボードだからということでもないようだ。

M.2スロットとSATAポートを排他利用したくない場合は、CPU配下のPCI Expressを44レーンと豊富に持つ拡張性の高いCore XシリーズのCPUと、X299チップセット搭載マザーボードの組み合わせを選択したほうがいいんだけど、Core XシリーズのCPUがそもそも高価なのと、CPU配下のPCI Expressレーンの分割方法が複雑なのでX299マザーボードはZ390のものよりも高くつく。

ちなみに、X299のPCH配下のHSIOは30レーンでZ390と同じだけど、200シリーズ・チップセットなので基本設計が新しくなく、USB 3.1にネイティブで対応していない。対応するにはUSB 3.1用の補助コントローラ・チップを搭載しなければならないので、もともと割高なX299マザーボードの価格の高さに拍車をかけている。また、消費電力も高く、電源も大容量のものが必要なうえに電気代の維持費も考慮する必要があるので、「全部載せ」のX299が本当に必要なのかどうかは使用目的とよく相談したほうがいい。

Z390-S01のオンボード・コネクタの配置
Z390-S01のオンボード・コネクタ一覧
コネクタ名 仕様 備考
LGA1151 第8/第9世代Intel Coreプロセッサ対応  
CPU_PWR1 8ピンEPS12V電源  
ATX_PWR1 24ピンATX電源  
CPU_FAN1
PUMP_FAN1
SYS_FAN1
SYS_FAN2
SYS_FAN3
SYS_FAN4
4ピンPWM対応ファン・コネクタ  
DIMMA1/A2
DIMMB1/B2
DDR4 SDRAM DIMMスロット Non-ECC UDIMM
最大64GB(128GB)
JAUD1 10-1ピン・フロント・オーディオ・コネクタ  
JFP1 10-1ピン・フロント・パネル・コネクタ1
(電源/リセット・スイッチ、電源/HDD LED)
 
JFP2 4ピン・フロント・パネル・コネクタ2
(ブザー/スピーカー)
 
JCI1 2ピン・シャーシ侵入検出機能コネクタ  
JRGB1 4ピンRGB LEDコネクタ 12V G R B
JTPM1 14-1ピンTPMモジュール・コネクタ 無効化
JTBT1 5ピンThunderboltアドオン・カード・コネクタ  
JBAT1 クリアCMOSジャンパ  
JUSB1
JUSB2
10-1ピンUSB 2.0ピンヘッダ JUSB2はCNViの
Bluetoothと帯域を共用
JUSB3
JUSB4
20-1ピンUSB 3.0(USB 3.1 Gen1)ピンヘッダ JUSB4は常時電力供給
JSPI1 シリアル・ペリフェラル・インタフェース BIOS非常書換用
M2_1 M.2スロット Key ID.M 2242/2260/2280/22110
PCIe/SATA両用
SATA使用時、SATA2
使用不可
M2_2 M.2スロット Key ID.M 2242/2260/2280
PCIe/SATA両用
PCIe/SATA使用時、SATA5/6
使用不可
CNVI_1 M.2スロット Key ID.E
CNVi RFC用コネクタ
使用時、JUSB2
使用不可
PCI_E1
PCI_E2
PCI_E3
PCI_E4
PCI_E5
PCI Express 3.0 [x16] (CPUレーン)
PCI Express 3.0 [x1] (PCHレーン)
PCI Express 3.0 [x16] (PCHレーン [x4動作])
PCI Express 3.0 [x1] (PCHレーン)
PCI Express 3.0 [x1] (PCHレーン)
 
SATA▼1_▲2
SATA▼3_▲4
SATA▼5_▲6
SATA3 6GB/sコネクタ  

バック・パネル

バックパネルには、USB 2.0端子が1つもない。Super Speed USBのポートにUSB 2.0かUSB 1.1でも十分なUSBキーボードやUSBマウスを接続してしまうと少しもったいない気もする。DAIVのケースのフロント・パネルにもUSB 2.0端子がないので、外部接続が可能なUSB 2.0端子が1つもないことになる。

「Z390-S01」のバックパネル

USB 2.0をどうしても外部接続して使いたい場合はマザーボードのピンヘッダからPCIスロット経由でリア・パネルか、3.5インチや5.25インチ・ベイに増設するフロント・パネルなどに引っ張ってくるしかない。ただ、USB 3.0はUSB 2.0/1.1と後方互換性があるので、USB 2.0でないと困る事情も特になく、空いているUSB 2.0ピンヘッダをどう活かそうか考えている。

排他仕様について

Z390チップセットのHSIO割り当て
HSIO 用途 PCIe
1 USB 3.1 Gen1/Gen2 #1
2 USB 3.1 Gen1/Gen2 #2
3 USB 3.1 Gen1/Gen2 #3
4 USB 3.1 Gen1/Gen2 #4
5 USB 3.1 Gen1/Gen2 #5
6 USB 3.1 Gen1/Gen2 #6
7 USB 3.1 Gen1 #7 PCIe 3.0 #1 x2 x4
8 USB 3.1 Gen1 #8 PCIe 3.0 #2
9 USB 3.1 Gen1 #9 PCIe 3.0 #3 x2
10 USB 3.1 Gen1 #10 PCIe 3.0 #4
11 PCIe 3.0 #5 GbE (LAN) x2 x4
12 PCIe 3.0 #6
13 PCIe 3.0 #7 x2
14 PCIe 3.0 #8
15 PCIe 3.0 #9 GbE (LAN) x2 x4
16 PCIe 3.0 #10
17 PCIe 3.0 #11 SATA #0a x2
18 PCIe 3.0 #12 SATA #1a GbE (LAN)
19 PCIe 3.0 #13 SATA #0b GbE (LAN) x2 x4
20 PCIe 3.0 #14 SATA #1b
21 PCIe 3.0 #15 SATA #2 x2
22 PCIe 3.0 #16 SATA #3
23 PCIe 3.0 #17 SATA #4 x2 x4
24 PCIe 3.0 #18 SATA #5
25 PCIe 3.0 #19 x2
26 PCIe 3.0 #20
27 PCIe 3.0 #21 x2 x4
28 PCIe 3.0 #22
29 PCIe 3.0 #23 x2
30 PCIe 3.0 #24

Z390-S01の仕様を調べていくにつれて、M.2スロットがせっかく2つもあるのに、両方使うと6ポートでも足りないくらいのSATAが4ポートに制限されてしまうという排他仕様がどうしても気になった。最新式の高度な電子回路の仕様を理解できるとは思えなかったけど、チップセットのデータシートに基づくネットの記事からなんとか情報を拾い集めてみた。

結論から言ってしまうと、「Z390チップセットがそういう仕様だから」。どこかのIT企業の不具合の言い訳のようだけど、自分で勘定してみた結果なのだからそうとしか言いようがない。

もう少し詳しく書くと、Z390チップセットにはHSIOと呼ばれる統合I/Oレーンが30本あり、マザーボードのメーカーはその範囲内で製品に使用するI/Oを決めて設計する。

HSIO(High Speed I/O)は、PCI Express 3.0、SATA 3、USB 3.0/3.1、GbEなどの高速インタフェースの総称で、第6世代Intel Coreシリーズ用の100シリーズ・チップセット(Skylake)から導入された概念。以前はそれぞれのI/Oに対応するコントローラ・チップを配置してそれぞれのドライバを用意しなければならなかったけど、チップセットにすべてのコントローラを統合することでメーカーはマザーボードの設計を簡略化できるだけでなく、同世代の異なるチップセットのマザーボードの設計を流用できるようになった。また、「USB 3.0は少なくてもいいからPCI Express 3.0の拡張スロットをできるだけ多く」といった特定のI/Oに特化するような柔軟な設計もできるようになった。

Z390はPCI Express 3.0を最大24レーン使えるけど、Z390-S01はバックパネルにUSB 3.1 Gen2(TYPE A+C)を2ポート、USB 3.1 Gen1を4ポート、オンボードにUSB 3.1 Gen1のピンヘッダを4ポート分備えているので、HSIOを10レーン使用している。つまり、PCIe 3.0 #1~#4を使用できないので、PCIe 3.0は20レーンまでしか使用できないことになる。USB 2.0のピンヘッダも4ポート分備えているけど、USB 2.0はもはや「高速インタフェース」ではないので、フレキシブルI/Oとは別枠でチップセットが直接制御している。いずれにせよ、帯域としてはUSB 3.0の10分の1以下なのでUSB 2.0ハブ・コントローラ・チップを挟めば計算上はHSIO 1つで10ポートは賄える。

更に、SATAを最大の6ポート使いたければ、PCIe 3.0 #13~#18は使えない。この時点で残りのPCIe 3.0は14レーン。

Z390-S01の場合、デバイス・マネージャで調べると、Realtek RTL8111H PCI-E GbE LANコントローラはPCIe 3.0 #5に、M2_1スロットに実装したPCIe 3.0 x4 NVMe SSDはPCIe 3.0 #9にマップされているから、PCIe 3.0 #9~#12の4レーンを占有することになる。残りのPCIe 3.0は9レーン。

PCI_E3スロットをx4動作で使用することを想定すると、連続してPCIe 3.0を4レーン確保できるところはPCIe 3.0 #21~#24だけになる。PCI_E2、PCI_E4、PCI_E5はそれぞれPCIe 3.0 x1なので、4つの拡張スロット合計で7レーン使用するので残りのPCIe 3.0は2レーン。HSIO 1レーンあたりの帯域は8Gbpsだから、USB 3.1 Gen2を規格どおりの10Gbpsで使えるようになっているとすれば、1ポートあたりHSIOを2レーン使うことになるので、もう余裕はない。

PCIeストレージとして使用できるのはオレンジで色を着けたPCIeコントローラだけなので、M2_2スロットにもPCIe x4 NVMe SSDやSATA SSDを実装してしまうとSATA #4と#5が使えなくなってしまう。これがM.2かSATA 6Gbpsのどちらかを選ばなければならない排他仕様の理由。

電源回路

最近のマザーボードでは電源回路の質の良し悪しでグレードの差がついたり、メーカーの電源回路に対する考え方が表れるようになった。特に、オーバークロックを試したい場合は電源回路が定格以上の出力にどれだけ耐えられるかが重要とされる。

マザーボードの仕様について書かれている記事を見ると、「VRMフェーズ」という用語が頻繁に出てくる。多ければ多いほどオーバークロックに向いているということらしいけど、最初はその理由がよくわからなかった。そもそもVRMとは何かというところから調べた。

VRMとは

Z390-S01全体に使用されている日本ケミコンの導電性高分子アルミ固体電解コンデンサ「NPCAP-PSF(左)/PSE(右)シリーズ」。105℃で20,000時間の高耐久性能を持つ。本来はアルミ缶頭部のアルミ色の部分が水色で、黒色の部分がアルミ色。おそらく大量調達を前提にカラーリングを特注したものと思われる。黒だからと言って特別グレードが高いわけではない。

VRM(Voltage Regulator Module)は、ATX電源から供給されたCPU用電源(EPS電源)の12VをCPU定格電圧の1~1.5Vくらいまで降圧するバック・コンバータ(Buck Converter)のことで、DC/DCコンバータの一種。低電圧大電流の電源回路を目的として設計されている。CPUをはじめとする集積回路は一定の電圧で動作することを前提にしてるけど、最近のCPUは負荷に応じて消費電力が急激に変動するので、入力電圧が一定と仮定すれば、負荷が増加して消費電力が増えると電流量も増え、負荷が減少して消費電力が減ると電流量も減る。ところが実際には、消費電力が変動すると電圧も変動してしまう。負荷増に追従できないと電圧降下が起こり、負荷減の場合は電圧上昇が起こってCPUの動作に影響を及ぼす。電圧が不足するとシステムが不安定になるし、電圧が過剰になって最大電圧を超えると最悪CPUが破損する。VRMは電流量が変動しても電圧を一定にする装置。

VRMの基礎はハイサイドとローサイドで1組のパワーMOSFET(大電力を取り扱うように設計された電界効果トランジスタの一種)を使用したスイッチング・レギュレータであり、スイッチング回路をON/OFFする時間の比を変えることで電流量が変化しても安定した電圧を供給できるように調整する。ただし、ハイサイドとローサイドのスイッチが両方同時にONになってしまうと回路が短絡(ショート)してMOSFETが損傷してしまう。これを回避するためにMOSFETのゲート信号のONのタイミングが重複しないような同期回路が組み込まれたMOSFETドライバICを使用する。これにチョークコイルや電解コンデンサのようなディスクリート・パーツを組み合わせた回路を同期整流回路という。

スイッチのON/OFFのタイミングを制御しているのはPWMコントローラ。CPUクーラーやケースファンの回転数制御方式としてよく目にするPWMとは異なり、VRM専用設計のPWMコントローラが使用される。VRMの出力電圧は常にPWMコントローラにフィードバックされていて、出力電圧が下がりそうになるとスイッチONの時間を長くし、上がりそうになるとスイッチONの時間を短くすることで電圧を設定値に近づけようとする。

理論上は同期整流回路は1つでもいいんだけど、MOSFETに流せる電流量には限度がある上、MOSFETに流れる電流が集中するのでMOSFET自身の内部抵抗によって生じる発熱(損失)が大きくなる。また、出力電圧は常に一定であるのが望ましいんだけど、必ずスイッチングの際にリップルという揺らぎが生じる。そのため、同期整流回路を複数用意し、大電流を分散させ、リップルを極力減らすために少しずつタイミング信号の位相をずらしてスイッチング回路を順次開閉していくようにする。位相を英語でフェーズと言い、それが複数あるので、「マルチ・フェーズ同期整流回路」と呼ばれる。

Z390-S01のVRMフェーズ数

PWMコントローラ・チップ「uP9521P」。拡大しているので大きく見えるけど、実際は6mm四方で目視では文字が読めないほど小さい。

VRMフェーズが不明なマザーボードのフェーズ数を調べる方法も、最初はCPUソケットの周囲に並んでいるチョークコイルの数を数えればいいんだろうか、くらいにしか理解できてなかったけど、まずはPWMコントローラを探せばいいということがわかった。

マザーボード上の電源用PWMコントローラ・チップの周囲の回路には独特の特徴があることもわかったので、探して拡大写真を撮ってみた。すると、uPIセミコンダクター社のuP9521PというPWMコントローラを使用していた。

uP9521Pは、ミドルレンジのマザーボードでもよく使われている、Intel CPUのIMVP8電源仕様に対応しているPWMコントローラ。CPUコア用に4フェーズ分、CPUコア以外の内蔵GPUやメモリなどへの電源供給用に3フェーズ分の最大7フェーズのタイミング信号を生成できる。よく、「4+3フェーズ」などと表現されるのはこれに由来している。

Z390-S01の上には10個のチョークコイルが並んでいて、その周囲にハイサイドとローサイドで1組プラス1個くらいのMOSFETと固体電解コンデンサがあり、それらで合計10組のVRMフェーズを構成している。PWMコントローラのタイミング信号はMOSFETをドライブするだけの能力が不十分なことが多く、MOSFETの前にはほぼ間違いなくMOSFETドライバICがある。ただ、場所の都合で基板の裏面に配置されていることも多い。

シングル・チャネルMOSFETドライバ・チップ「uP1962P」。こちらは2mm四方と更に小さい。パッケージには「FH」としか書かれていないけど、データシートと照合するとトップ・マーキングがオーダリング・インフォメーションと一致する。

CPUクーラーのバック・プレートにアクセスするためのメンテナンス・ホールから裏面を見てみたら、uP1962Pという12Vシングル・チャネルMOSFETドライバを使っていた。4個のuP1962Pの下に2組のVRMフェーズを置くことで電流の経路を2倍にし、擬似的に8フェーズの同期整流回路としている。タイミング信号は4フェーズなのでリップルの低減にはつながらないんだけど、電流の経路を増やせばMOSFETからの発熱を分散できると思われる。残りのVRMフェーズはCPU内蔵GPU用に1フェーズ、DDR4 SDRAM用に1フェーズずつ使われている。よく自作PCパーツの新製品記事に使われている表現としては「8(4×2)+1+1フェーズ」となる。

uP1962Pとほぼ同じ目的で使われるuP1965P(8ピン)も5V用シングル・チャネルMOSFETドライバ。しばしば「フェーズ・ダブラー」と呼ばれることもあるんだけど、MOSFETをスイッチさせるゲート信号出力を増幅する回路を内蔵してはいるものの、厳密にはフェーズ・ダブラーではない。ハイエンド・クラスのマザーボードではuP1961S(16ピン)のような本格的なデュアル・チャネルMOSFETドライバを使っているんだけど、そのデータシートのブロック図を見るとその名もずばり、「フェーズ・ダブラー」という回路が入っていて1つのタイミング信号を2つのタイミング信号に分割し、位相の異なるゲート信号を生成するようになっている。uP1961Sをフェーズ・ダブラーと呼ぶならわかるんだけど、2組のVRMフェーズに対してゲート信号を出力していれば一律にフェーズ・ダブラーというのは少々過大評価ではないだろうか。

VRMフェーズは多いほど良いのか

VRMフェーズの数が多ければ高負荷時に大電流を流せる他、PWMコントローラの周波数を上げると負荷追従性が良くなったり、チョークコイルの大きさを小さくできたりなど、一見長所ばかりのように思えるけど、単純に部品点数が多くなるのでマザーボードの価格が高くなったり、故障率が上がったりといった短所ももちろんある。また、高速でスイッチを開閉するとMOSFETのスイッチング損が増えてかえって発熱量が増えたり、低負荷時の変換効率が悪くなったりもする。

VRMの性能はそれぞれの部品の品質にも大きく影響を受け、VRMフェーズ数の多寡だけで性能の良し悪しを論じることはできない。特に、部品の大きさと性能はトレードオフの関係にあり、大きければ大きいほどコイルの損失が小さかったり、コンデンサのノイズ吸収能力が高い傾向にあるんだけど、マザーボードに乗る大きさと重量でCPUクーラーなどに干渉しないような高さという制限の中で電源回路を設計しなければならないことになる。

なので、VRMを実際に設計したことのある人に言わせると、「こんなに小さいチョークコイルとコンデンサで高効率の電源なんて無理なんじゃないの?」ということになる。こういった指摘もあり、VRMフェーズ数の多さばかりを強調するマザーボードメーカーの言うことを鵜呑みにすべきではないという批判もあるんだけど、実はVRMフェーズ数を増やさざるをえなかった理由もある。

IntelがHaswell/BroadwellマイクロアーキテクチャのCPUまであったFIVR(Fully Integrated Voltage Regulator)という内蔵電源回路を廃止したために、Skylakeマイクロアーキテクチャから電源回路をすべてマザーボード上に実装しなければならなくなった。Haswell/Broadwellでは、CPUにVCCINと呼ばれる主電源と、VDDQ、VCCSTの3系統だけ入力すればよかったけど、Skylake以降ではIMVP8規格に準拠した次の6系統を入力しなければならなくなった。

  • VCC – Processor Core Power Supply
  • VCCGT – Processor Graphics Power Supply
  • VCCIO – I/O Power Supply
  • VCCSA – System Agent Power Supply
  • VCCST – VCC Sustain Power Supply
  • VDDQ – DDR Power Supply

つまり、それぞれの入力電圧に対して適切な電力を供給するには最低6フェーズのVRMが必要になったということ。そうかといって、ハイエンド・マザーボードの16フェーズVRM電源回路などというものが本当に必要なのかどうかは微妙なところだけど、Intelから電源回路の設計を丸投げされたマザーボード・メーカーにもそれなりに事情はあるということだ。

現在のところIce Lakeというコード・ネームで呼ばれている第10世代Coreシリーズ・プロセッサからFIVRを再導入することがIntelから示唆されていて、TDP 15WというSoC向けかと思うくらいの極限までの省電力化とともに電源回路を小規模化することでCPUや電源回路からの発熱を減らし、ノートブック/ラップトップPCやタブレットPCなどのモバイル端末の軽量化や薄型化を狙っていると言われている。デスクトップ向けラインナップよりもモバイル向けラインナップが先に発表され、従来とは順序が異なっていることから、Ice Lakeマイクロアーキテクチャのデスクトップ向けCPUは登場しないか、当分先のことになるかもしれないという見方もある。

MSI製ATXマザーボードとの比較

同じMSI製ATXフォーム・ファクタのマザーボードで、Z390-S01と比較的仕様が似ているMPG Z390 GAMING PLUSZ390-A PROと比較してみた。

MSI Z390-A PRO ATX マザーボード [Intel Z390チップセット搭載] MB4617
posted with amazlet at 19.04.14
参考価格: ¥ 11,536 (2019-04-14)
MSI COMPUTER (2018-10-09)

オンボード・コネクタの比較

基板上に配置されているコネクタ類では、システム・ファン・コネクタとPCI Expressのスロットが1つずつ少ないことにまず気が付く。

ただ、減らされているPCI Expressのスロットは、CPU配下のPCI Express x16スロットの下ひとつ空ける形で省略されている。PCIスロットを2スロット占有するような大型のグラフィックス・カードを搭載すると、その下にあるPCI Expressスロットは使えなくなるので必ずしも必要ない。また、消費電力の大きくない1スロット型のグラフィックス・カードでも、GPUクーラーのエアフローを邪魔しないように、すぐ隣りのスロットの使用は避けられる傾向にある。スロットが多ければそれだけ部品点数は多くなるので、使われる見込みの少ないスロットを思い切って削ってしまうのはコスト削減の方法としては妥当だと思う。

システム・ファン・コネクタもPCケースが密閉型で大量にファンを搭載できるような仕様でない限り吸排気で1つずつ、2つもあれば十分なので、コネクタが5つあっても全部使い切れるかどうかは微妙なところで、コスト削減も兼ねて4つでちょうどいい数なのかもしれない。

シリアル・ポート(RS-232C)やパラレル・ポート(プリンタ・ポート)がない代わりにThunderbolt用のコネクタが備えられていて、特殊な用途でもない限り使われなくなってきているレガシーポートを切り捨てる代わりに比較的新しい仕様のインタフェースを実装することで将来の拡張性を持っているという点では、安かろう悪かろうの廉価版OEMと馬鹿にできない部分もある。

オンボード・コネクタの比較
Z390-S01 MPG Z390
GAMING PLUS
Z390-A PRO 備考
LGA1151 LGA1151 LGA1151  
CPU_PWR1 CPU_PWR1 CPU_PWR1  
ATX_PWR1 ATX_PWR1 ATX_PWR1  
PCIE_PWR1  
CPU_FAN1
PUMP_FAN1
SYS_FAN1
SYS_FAN2
SYS_FAN3
SYS_FAN4
CPU_FAN1
PUMP_FAN1
SYS_FAN1
SYS_FAN2
SYS_FAN3
SYS_FAN4
CPU_FAN1
PUMP_FAN1
SYS_FAN1
SYS_FAN2
SYS_FAN3
SYS_FAN4
 
SYS_FAN5 SYS_FAN5  
DIMMA1/A2
DIMMB1/B2
DIMMA1/A2
DIMMB1/B2
DIMMA1/A2
DIMMB1/B2
 
JAUD1 JAUD1 JAUD1  
JFP1 JFP1 JFP1  
JFP2 JFP2 JFP2  
JOC1 オーバークロック・ボタン
JCI1 JCI1 JCI1  
JRGB1 JRGB1 JRGB1  
JRGB2  
JTPM1 JTPM1 JTPM1  
JTBT1 JTBT1  
JLPT1 パラレル・ポート
JCOM1 JCOM1 シリアル・ポート
JBAT1 JBAT1 JBAT1  
JUSB1
JUSB2
JUSB1
JUSB2
JUSB1
JUSB2
 
JUSB3
JUSB4
JUSB3
JUSB4
JUSB3
JUSB4
 
JSPI1 JSPI1 JSPI1  
M2_1 M2_1 M2_1  
M2_2 M2_2  
CNVI_1 CNVI_1 CNVI_1  
PCI_E1 PCI_E1 PCI_E1 PCI-E 3.0 [x16](CPU)
PCI_E2 PCI_E2 PCI-E 3.0 [x1](PCH)
PCI_E2 PCI_E3 PCI_E3 PCI-E 3.0 [x1](PCH)
PCI_E3 PCI_E4 PCI_E4 PCI-E 3.0 [x16](PCH [x4動作])
PCI_E4 PCI_E5 PCI_E5 PCI-E 3.0 [x1](PCH)
PCI_E5 PCI_E6 PCI_E6 PCI-E 3.0 [x1](PCH)
SATA▼1_▲2
SATA▼3_▲4
SATA▼5_▲6
SATA▼1_▲2
SATA▼3_▲4
SATA▼5_▲6
SATA▼1_▲2
SATA▼3_▲4
SATA▼5_▲6
 

入出力等の比較

Z390-S01のLANコントローラがRealtek製なのに対して、他の2つのマザーボードはIntel製のLANコントローラを搭載していて、この辺でもコスト削減を図っているのがわかる。一般に、LANコントローラはIntel製よりもRealtek製のほうがCPU負荷が高いと言われているけど、常時CPU負荷が高く、高速通信も継続しなければならない用途(ネットワーク対戦ゲームとか?)でもない限りそれほど気にならない。

マザーボードの異常を示す「EZ DEBUG LED」と呼ばれるLED群や、MSIが「Mystic Light」と呼んでいる単純に電飾を目的としたLEDがすべて廃されているところもコスト削減の一環なんだろう。電飾関係はケース側面が透明でない場合はまったく役に立たないので、少しでもコストが削減できるなら、真っ先に削りたい機能ではある。

その一方で、ミドルレンジ以上のマザーボードに搭載されているデジタル音声出力のS/PDIF出力が実装されていたり、MPG Z390 GAMING PLUSやZ390-A PROの中間のグレードや単純なダウングレード版とも言えないようだ。ただ、オーディオ・コントローラがALC892なので、S/PDIFで出力したとしてもどの程度の音質になるかは微妙なところだけど。

入出力等の仕様の比較
  Z390-S01 MPG Z390
GAMING PLUS
Z390-A PRO
VRMフェーズ 8+1+1 8+1+1 8+1+1
オンボード・グラフィックス DVI-I
DisplayPort
HDMI
DVI-D
VGA
DVI-D
DisplayPort
オンボードLANコントローラ Realtek RTL8111H Intel I219-V Intel I219-V
オーディオ・コントローラ Realtek ALC892 Realtek ALC892 Realtek ALC892
スーパーI/O NUVOTON NCT6797 NUVOTON NCT6797 NUVOTON NCT6797
USB 2.0 Type-A 0 2 2
USB 3.0 (3.1 Gen1) Type-A 4 2 2
USB 3.1 Gen2 Type-A 1 1 1
USB 3.1 Gen2 Type-C 1 1 1
音声入出力 3.5mmプラグ×5
S/PDIF出力
3.5mmプラグ×6 3.5mmプラグ×6
PCI-Eスチール・スロット なし あり なし
EZ DEBUG LED なし あり あり

UEFI BIOS

PCが起動した時に「Delete」キーを押しっぱなしにしているとUEFI BIOS画面が表示される。「EZ Mode」の画面は次のとおり。BIOS Ver.の項目を見ると「E7C22IM0.107」となっていて、マザーボードのモデルナンバーが「7C22」であることを裏付けている。基本的には最近のMSIマザーボードのインターフェースを踏襲したものになっている。ただ、BIOSを書き換えるためのツールである「M-FLASH」がメニューにない。本来は左下の「Hardware Monitor」のあたりにある。

同じく、「Advanced Mode」の画面。やはり、M-FLASHのメニューがない。MSI純正マザーボードではオーバークロックに関するメニューは「OC」となっているが、Z390-S01では「FEATURES」と名前が変わっている。設定項目は「OC」と大差なく、詳細設定でCPUのVCORE電圧を変更したり、クロック周波数の倍率を固定したりといった操作をすることでオーバークロックすること自体は可能。ただ、本来は右側にある「OC PROFILE」メニューがなく、自分で設定を詰めたオーバークロッキング・プロファイルを保存したり、呼び出したりすることはできない。オーバークロックをしたことでPCが故障した場合は保証の対象外とするとマウスは明言しているのでOC PROFILEメニューがないのは仕方ないとしても、M-FLASHくらいは残してほしかった。

でも、オーバークロックを禁止するくらいだったら、オーバークロック対応のZ390チップセットをなぜ選んだのか理解に苦しむところ。最初からオーバークロック非対応のQ370チップセットのほうがマウスにとっては都合が良かったんじゃないのかと思う。ただ、Q370はエンタープライズ向けなので、コンシューマー向けやゲーミングを主力に置いているMSIとしては、ほぼ仕様が同じならZ390のほうがOEMマザーボードを作りやすかったんじゃないかと思う。

BIOS更新

mouseモデルBIOS

E7C22IM0.10A

2019年2月18日付でZ390-S01用の新BIOS「E7C22IM0.10A」が配布されていて、AFUWINx64というユーティリティでWindows上からBIOSを更新することになっているんだけど、WindowsからのBIOS更新は稀に失敗することがあるので、そんな方法を使うくらいなら最初からM-FLASHで更新できるようにしておいたほうが安心だったんじゃないかと思ってしまう。基本的に、特に動作上の不都合が発生していなければ、無理に更新する必要はない。

MSIは、2019年1月4日付のニュースリリースでZ390チップセット搭載マザーボード全製品についてDIMMスロットひとつあたり32GBのJEDEC規格準拠DDR4 SDRAMモジュールに対応したとしているけど、これにZ390-S01が含まれているかどうかはこの時点では不明だった。わざわざ「JEDEC規格準拠」と書いているのは、「DC(ダブル・キャパシティ)」という商品名でJEDEC規格外の32GBメモリ・モジュールはこれまでにもあったからだ。

E7C22IM0.10C

更に、2019年4月9日付で「E7C22IM0.10C」が配布された。OEMマザーボードでは初期構成のCPUやメモリ、ストレージデバイスなどが問題なく動作してさえいれば、それ以上の機能向上を図ることは極めて稀で、BIOSを更新すること自体が珍しいと思う。

E7C22IM0.10D

前のBIOSリリースがあってまだ間もないというのに、2019年5月22日付で「E7C22IM0.10D」が配布された。これは、前の「E7C22IM0.10A」と「E7C22IM0.10C」を更新するもので、INTEL-SA-00233で報告されたIntel MEの脆弱性に対策を講じる。ハードウェア・レベルでの脆弱性のため、PCに電源が入っていてインターネットにつながっていれば攻撃を受ける可能性があり、WindowsなどのOSレベルの対策やアンチウィルス・ソフトウェアでは脆弱性を悪用したサイドチャネル攻撃を防ぐことはできない。

セキュリティに関して感度が高いのは悪いことではないけれど、こうも頻繁にBIOSを更新することになるのであれば、なんでM-FLASHを削っちゃったのかとOEM製品開発担当者を問い詰めたいくらい。WindowsからのBIOS更新は本当にリスキーで、ハードウェアの情報を書き換えようとするわけだから、アンチウィルス・ソフトウェアなどがマルウェアと判断してその実行を妨げようとしてBIOS更新に失敗してしまう可能性さえあるし、BIOS更新中に偶発的にでもブルースクリーンが発生しようものなら目も当てられない。

ちなみに、Intel ME(Management Engine)というのは、第6世代Coreシリーズ・プロセッサ以降のための比較的新しいIntel製チップセットに内蔵されている軽量マイクロカーネル・オペレーティング・システムを実行している組込みマイクロコンピュータのこと。ホストOSが動作しているCPUとは独立して動いているものなので、その気になれば普通はアクセスが禁止されているメモリの保護領域を読み取ったりすることもできる。

E7C22IM0.10E

2019年6月12日付で「E7C22IM0.10E」が配布された。これは、前の「E7C22IM0.10A」、「E7C22IM0.10C」及び「E7C22IM0.10D」を更新するもの。ひととおりBIOSイメージを調べてみたけど、マイクロコードにもMRCにも変更はなかった。

E7C22IM0.10K

2019年12月13日付で「E7C22IM0.10K」が配布された。これは、前の「E7C22IM0.10A」、「E7C22IM0.10C」、「E7C22IM0.10D」、「E7C22IM0.10E」及び「E7C22IM0.10I」を更新するもの。E7C22IM0.10Iというのは公式にはアナウンスがなかったバージョンだけど、一部の機種には使われていたものなのかもしれない。ひととおりBIOSイメージを調べてみたら、マイクロコードとMRCに変更があった。

iiyamaモデル/o’zzioモデルBIOS

上記のBIOSの他に、「E7C22IM0.1IA(リリース日不明)」と「E7C22IM0.1IC(2019-04-11)」といったバージョンがあることがわかっている。長らくどういった出自のBIOSか不明なままだったけど、最近ようやく糸口が見つかり、iiyamaモデル用のBIOSである可能性が濃厚になってきた。iiyamaモデルというのはパソコン工房で販売しているBTOパソコンのこと。

ただ、BIOSのバイナリ・ファイルの実体の入手が困難であるため、詳細は不明。上記のmouseモデルBIOSとの相違点などもわからないけど、おそらくPOST画面で表示されるフルスクリーン・ロゴの画像が差し替わっている程度の違いだと推測できる。

なんでこういった推測ができるに至ったかというと、マウスがPC DEPOTブランドの「o’zzioモデル」として出荷しているPCではMicro-ATXサイズのZ390M-S01を使っているんだけど、「mouseモデル」ではBIOSバージョンが「E7C24IM0.10J(イチ・ゼロ・ジェイ)」などとなっているのに対し、「o’zzioモデル」では「E7C24IM0.1OJ(イチ・オー・ジェイ)」となっているため。末尾3桁の中央の桁は出荷先のブランドを示していることは容易に推測できる。だから、「1IC」の中央の「I」は「iiyama」の頭文字ではないかと推定できるというわけ。

「0(ゼロ)」と「O(オー)」や「1(イチ)」と「I(アイ)」は見間違えやすく、英語圏では連番の場合ではIとOを飛ばすのが通例だけど、BIOSはそんなに頻繁に変更するものでもないので、あまり気にしていない可能性はある。

どうして持ってもいない「o’zzioモデル」のBIOSバージョンの命名規則を知ることができたかなんだけど、マウスコンピューターの正規顧客だけが知りうる情報をフル活用して調査した、とだけここでは書いておく。

MSIバージョンBIOS

Z390-S01はOEMマザーボードなので、正式にMSIから公開されている情報はないと思い込んでいたけど、偶然見つけた中国語版のWEBサイトに情報が掲載されていて、BIOSのバイナリ・ファイルも配布されていた。これは盲点だった。マウス向けに出荷しているBIOSとは別に、MSIで独自にBIOSを並行ビルドして配布しているようだ。

Z390-S01

Ultrabook, Celeron, Celeron Inside, Core Inside, Intel, Intel Logo, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Inside Logo, Intel vPro, Itanium, Itanium Inside, Pentium, Pentium Inside, vPro Inside, Xeon, Xeon Phi, and Xeon Inside are trademarks of Intel Corporation in the U.S. and/or other countries. © 2016 NVIDIA Corporation.

  • M7C22v1.1 (Z390-S01ユーザーマニュアル PDF形式)

MSIが正式に配布しているBIOSなので、Z390-S01のBIOSをこれらに書き換えても問題なく動作はするだろう。中国語版のWEBサイトで配布されているものだけど、BIOSのインタフェース言語は英語が基本なので、設定項目が読めないということもないだろう。しかしながら、MSI版への書き換えは推奨しない。販売店からリリースされたものでないBIOSへの書き換えなどはやらないほうが無難だ。

更に言えば、マウスから出荷されているPCのZ390-S01はM-FLASHが無効化されているので、どうやってMSI版のBIOSに書き換えるのかは各自で考えてもらうより他にない。マウスが配布しているBIOSはM-FLASHを使わずに書き換えるので、MSI版のBIOSに書き換える方法もあるだろうけど、他製品のBIOSを間違って書き込んでしまわないようにするための安全装置、様々なセキュリティやプロテクトを解除するなど、ハッカーのような知識が必要で、はっきり言って楽ではない。簡単に思いつく方法をひとつ試してみたけど、プロテクトに阻害されてBIOSのフラッシュROMの書き換えまで進まなかった。

また、BIOSの書き換えに伴ってOEM版のOSの起動に必要な情報も書き換えてしまい、別のマザーボードに変わってしまったと判断されてWindowsのデジタル認証が通らなくなってしまう可能性もあるので、どうしてもやりたいならば、そういったリスクがあることも承知の上で自己責任で試してほしい。

Z390-S01のMSIバージョンBIOS一覧
BIOS 更新内容 MRC CPUID Rev. 備考
E7C22IMS.100
(7C22v10)
  • New BIOS Release
0.7.1.80 906EA 9A  
906EB 9A  
906EC 9E  
E7C22IMS.140
(7C22v14)
  • Improved memory compatibility.
  • Improved the adaptive rule of Intel Thermal Velocity Boost when overclocking.
  • Optimized CPU Vcore voltage under Offset Mode for 9th CPU.
  • Improved M2 Genie function.
  • Improved S5 wake up function.
0.7.1.95 906EA AA 変更
906EB AA 変更
906EC A2 変更
E7C22IMS.150
(7C22v15)
  • Add TG setting
  • Optimize M.2 Genie.
  • Improve S4 resume issue.
  • Improve Intel 750 nvme compatibility.
0.7.1.95 906EA AA 同上
906EB AA 同上
906EC A2 同上
906ED AA 追加
E7C22IMS.160
(7C22v16)
  • Update RST driver to 17.2
  • Update Microcode to support upcoming cpu.
0.7.1.95 906EA AA 同上
906EB AA 同上
906EC A2 同上
906ED B0 変更
E7C22IMS.170
(7C22v17)
  • Update RST driver to 17.5
  • Update Microcode.
0.7.1.110 906EA B4 変更
906EB B4 変更
906EC BE 変更
906ED BE 変更
E7C22IMS.180
(7C22v18)
  • Update Microcode.
  • Improved TPM function.
0.7.1.112 906EA CA 変更
906EB CA 変更
906EC CA 変更
906ED CA 変更

マイクロコード(CPUID)の追加

新BIOSの更新内容は「動作の安定性を向上した」というもので、2019年6月現在で日本未発売の第9世代CPU新モデル用のマイクロコードや、当初の仕様を超える大容量メモリ・モジュールへの対応など、互換するハードウェアが追加されたというものではないと思っていた。しかし、ひょっとすることがあるかもしれないと思い、UEFITool NE A55を使ってBIOSイメージ・ファイルを解析してみたところ、E7C22IM0.10CからCPUID「906ED」のマイクロコードが追加されていた。各BIOSとCPUIDの対応は次の表のとおり。

BIOSの対応CPUID
BIOS CPUID Rev. Date 備考
E7C22IM0.10A 906EA AA 2018-12-12  
906EB AA 2018-12-12  
906EC A2 2018-09-29  
E7C22IM0.10C 906EA AA 2018-12-12 同上
906EB AA 2018-12-12 同上
906EC A2 2018-09-29 同上
906ED B0 2019-02-04 追加
E7C22IM0.10D 906EA B4 2019-04-01 変更
906EB B4 2019-04-01 変更
906EC AE 2019-02-14 変更
906ED B8 2019-03-17 変更
E7C22IM0.10E 906EA B4 2019-04-01 同上
906EB B4 2019-04-01 同上
906EC AE 2019-02-14 同上
906ED B8 2019-03-17 同上
E7C22IM0.10K 906EA CA 2019-10-03 変更
906EB CA 2019-10-03 変更
906EC CA 2019-10-03 変更
906ED CA 2019-10-03 変更

CPUIDはCPUのモデルを特定するものではなく、マイクロアーキテクチャを特定するものなので、ある個体のCPUがどのCPUIDに属するかはS-specを確認しないと正確なところはわからない。S-specはヒートスプレッダに刻印してあるけど、BOX版の場合はパッケージにも書いてある。

おおまかに分類すると、906EA 及び 906EB が第8世代Coreシリーズ・プロセッサで、906EC 及び 906ED が第9世代Coreシリーズ・プロセッサなんだけど、ナンバリングでは第9世代のCore i5-9400FのCPUIDが906EAだったり、Core i3-9350KのCPUIDが906EBだったりする。i5-9400FはU0ステッピング、i3-9350KはB0ステッピングといって、第8世代の技術や設計を流用しているためなんだけど、正確に識別できないので第8世代対応マザーボードのBIOS更新が必要ないというわけでもない。第9世代にも初期生産型のP0ステッピングと脆弱性などを改善したR0ステッピングの2種類があり、同じi9-9900Kやi7-9700KでもR0ステッピングで製造されているものはBIOSの更新をしないと正常に動作しない。

免責事項

念のため釘を刺しておくけど、CPU換装はマウスの保証規定に反する改造行為なので、本記事を根拠としてBIOSが対応したと判断してCPUを換装する場合は完全に自己責任となる。換装中や換装後に発生した問題についてはマウスをはじめ誰も助けてくれないし、上記の表はBIOSイメージの調査結果を書き留めているに過ぎないので換装後の動作を保証するものではない。換装後に動作しなかったり、Windowsのデジタル認証が解除されるような事態に陥ってしまったとしても問い合わせや苦情については一切受け付けないのでご承知おき願いたい。

特に、R0ステッピングのCPUを既存のシステムに導入した場合、BIOSが対応していてもWindowsカーネルが新ステッピングに対応できないために正常に動作しないことがインターネットの記事で報じられている。安定運用にはWindowsのクリーン・インストールが必須という厄介な代物になってしまった。最近のOEM版Windowsはインストール・メディアが付属しないので再インストールの方法はひとつではなく、事前準備も含めてその手順も決して簡単とは言えない。イーサネットもまともに使えない状態でドライバのインストールから始めなければならないので、インターネットに接続できる2台目のPCがないと、怖くてOEM版Windowsのクリーン・インストールなんてできない。システムをゼロから再構築する自信がない人は、悪いことは言わないので安易なCPU換装はやめておいたほうがいい。CPUを自由に換装したり、気軽にOSを再インストールしたりしたいのであれば、最初からPCを自作するべきだ。

MRCリビジョン

2019年初頭にあったZ390チップセット搭載マザーボードのトピックは、従来ひとつのDIMMスロットにつき最大16GBのメモリ・モジュールまで、4スロット合計で64GBまでしか搭載できなかったものが、1スロットあたり32GBに拡張され、システム・メモリを最大128GB搭載できるようになったことだ。ネットの記事によると、IntelがMRC(Memory Reference Code)を更新したことで実現したということだったので、Z390-S01のMRCリビジョンを調べてみた。

ノースブリッジ(MCH = Memory Controller Hub)はCPUに統合されていて独立したハードウェアとしては既に廃止されているけど、概念だけは残っているのでPCIのホスト・ブリッジのレジスタを調べることでメモリ・コントローラのステータスを知ることができる。CPU-Zを使ってリポートを出力させるとB:00h D:00h F:00hがノースブリッジではなく、ホスト・ブリッジに割り当てられていることがわかる。

PCI Devices
-------------------------------------------------------------------------

Register space PCI Express, base address = 0x0E0000000

Description Host Bridge
Location bus 0 (0x00), device 0 (0x00), function 0 (0x00)

Intel Arkにあるデータシート「8th and 9th Generation Intel Core Processor Families and Intel Xeon E Processor Family Datasheet, Volume 2 of 2」の「3. Host Bridge/DRAM Registers」を参照すると、Host Memory Mapped Register Range Base(MCHBAR)の位置がホスト・ブリッジのレジスタ・ベース・アドレスからOffset+48hに格納されていることがわかる。これを元にして、RW – Read & Write Utilityを使ってメモリにマップされているレジスタのダンプを表示させる。すると、当該アドレスはFED10000hだとわかる(末尾の1はフラグなので無視)。

次に、同データシートの「7.42. MCDECS_CR_MRC_REVISION_0_0_0_MCHBAR_MCMAIN」を参照すると、MCHBARのベース・アドレスからOffset+5034hにMRCのリビジョン情報が格納されていることがわかる。同じくRWでFED15000hからのメモリ・ダンプを調べると、「0007015F」という値が格納されている。左から8ビットずつ、「Major」、「Minor」、「Revision」、「Build #」の順に並んでいるので、MRCリビジョンは0.7.1.95だとわかる。

念のため、HWiNFO64のSMBIOS DMI情報からマザーボードに実装されているファームウェアのバージョンを調べてみると、0.7.1.95で間違いなかった。

16進数でのMRCリビジョンがわかったので、UEFITool NE A55でE7C22IM0.10Dのイメージ・ファイルを開いて「0007015F」のHex Patternで検索をかけてみると、「SiInitPreMem」というモジュールのTE Imageに該当するデータがあった。同モジュールにはPCに電源を投入した直後にメモリ・トレーニングを実施したり、メモリを初期化するコードが入っている。

ところが、手持ちのZ390-S01用BIOSイメージのMRCリビジョンは全部0.7.1.95だったので、新しいのか古いのかわからない。そこで、同じMSI製のZ390-A PROのBIOSと比較してみた。メモリ互換性向上が明記されているBIOSバージョンでは0.7.1.80から0.7.1.95にリビジョン・アップしていた。これだけ見ると、Z390-S01も32GBメモリ・モジュールに対応したかのように見えてしまうけど、HWiNFO64のSMBIOSの解析結果によると最大物理メモリ容量は64GBで変わっていなかった。

そこで更に調査範囲を広げ、ASUSやASRockのZ390マザーボード用BIOSに組み込まれているMRCのリビジョンがメモリ互換性向上の前後で変わっているかどうか同様の方法で調べてみた。MRCリビジョンが書き込まれている部分の前後のデータにはメーカーやバージョンには影響を受けない普遍的な特徴があり、それを検索することでMRCリビジョンを特定できる。調査結果は次の表のとおり。

BIOSのMRCリビジョン
BIOS MRC Rev. Date 備考
MSI Z390-S01(マウス版)
E7C22IM0.10A 0.7.1.95 2019-02-18  
E7C22IM0.10C 0.7.1.95 2019-04-09  
E7C22IM0.10D 0.7.1.95 2019-05-22  
E7C22IM0.10E 0.7.1.95 2019-06-12  
E7C22IM0.10K 0.7.1.112 2019-12-13  
MSI Z390-S01(MSI版)
E7C22IMS.100 0.7.1.80 2018-09-27  
E7C22IMS.140 0.7.1.95 2019-01-17 Improved memory compatibility.
E7C22IMS.150 0.7.1.95 2019-02-22  
E7C22IMS.160 0.7.1.95 2019-03-21  
E7C22IMS.170 0.7.1.110 2019-08-30  
E7C22IMS.180 0.7.1.112 2019-12-25  
MSI Z390-A PRO
E7B98IMS.130 0.7.1.80 2018-11-15  
E7B98IMS.140 0.7.1.95 2019-01-18 Improved memory compatibility.
ASUS ROG STRIX Z390-F GAMING
ROG-STRIX-Z390-F-GAMING-
ASUS-0702.CAP
0.7.1.66 2019-01-18  
ROG-STRIX-Z390-F-GAMING-
ASUS-0805.CAP
0.7.1.66 2019-02-01 Supported JEDEC standard DDR4 32GB memory.
ASRock Z390 Extreme4
Z39EX42.00 0.7.1.72 2018-11-21  
Z39EX42.30 0.7.1.72 2019-01-16 Improve the memory compatibility.

意外にも、ASUSやASRockのマザーボードはメモリ互換性向上を謳っているものの、MRCリビジョンが変わっていないことが判明した。特に、ASUSは明確にJEDEC規格32GBメモリ・モジュールをサポートしたと明言している。つまり、MSIのマザーボードではMRCリビジョンが上がっているからと言っても、32GBメモリ・モジュールに対応したとは断言できない。

MRCは、その名のとおり「リファレンス・コード」なので、Intelが「こんな風にすると第9世代Coreシリーズ・プロセッサは32GBメモリに対応できるよ」と示したものだ。リファレンス・コードという用語はIT用語辞典では次のように説明されている。

リファレンスコード (reference code)

ある技術や規格をソフトウェアで実装する際にお手本となる標準ソースコード。開発元などが提供する実装例で、技術の仕様書や標準規格などを忠実に実装したもの。

仕様書などでは特定の状態における細かい動作などを定義しきれないことが多いため、開発者はリファレンスコードと同じ挙動になるよう実装を行うことにより、その技術を利用する他のソフトウェアなどとの相互運用性を高めることができる。

リファレンスコードは実装の標準を示す目的で開発されるため、最適化や高速化などのチューニングは基本的には行われず、最も素直に、平易に技術を実装したものが多い。そのままのコードが実際の製品などに使われることは想定していない場合が多く、実際、そのままでは実行速度や必要なメモリ容量などで実用に耐える十分な性能が出ないことが多い。

出典:IT用語辞典 e-Words

MRCはC言語で書かれたシンプルなソースコードでマザーボード・メーカーに配布されるため、バイナリコードとして配布されるマイクロコードとは異なり、それをまったく改変せずにまるごとBIOSに組み込む必要はない。MRCを受け取ったメーカーがIntel作成のコードを調べた結果、大規模な変更が必要なく、独自にチューニングすることでJEDEC規格のDDR4 32GBメモリ・モジュールに対応できると判断したのであれば、MRCリビジョンを更新しなくてもよいことになる。要は、各メーカーの味付け次第ということだ。

少し前までの青色や灰色の背景の古典的なBIOS画面では「Main」タブにMRCリビジョンが表示されていたものだけど、GUI化されてから表示されなくなったのはMRCリビジョンが必ずしも重要ではなくなったからなのかもしれない(ただし、マザーボード・メーカーに関わらず、AMI BIOSを解析すると「Memory RC Version」という表示項目が残っているのが確認できる)。

もっとも、Z390-S01以外のZ390マザーボードの現物を持っていないので、ASUSやASRockのマザーボードをシステムに組み込んだ時に物理メモリの最大容量がどのように認識されるかは確認のしようがない。あくまでもBIOSイメージを解析しただけの理論上の推定に過ぎないことはご承知おき願いたい。

32GBメモリ・モジュールをDIMMスロットに装着してみて認識するか確認すれば一番手っ取り早いんだろうけど、2019年6月現在では、日本ではECC無しでアンバッファードDIMMのDDR4 32GBメモリ・モジュールは入手できない状態にあった。欧米では少しずつ流通していたけど、すぐお隣りの国で設計されたものなのに日本では手に入らないというのは実に皮肉なことだ。2020年に入ってからはSamsung製以外のデュアル・ランク32GB UDIMMの製品も増え、2万円前後で入手できるようになったので、128GBメモリ環境構築の敷居は低くなった。

1枚で32GBのSamsung純正DDR4メモリが店頭販売中、実売2.5万円

Samsung純正モジュールを採用した容量32GBのDDR4メモリ「M378A4G43MB1-CTD」が、パソコンショップ アークで販売中だ。

3.7万円から買えるSamsung純正のDDR4 32GBメモリー

128GB物理メモリ環境構築可能情報

MSIの公式サイトでZ390-S01のBIOSに関する正式な情報を入手できたので、MRCリビジョンが0.7.1.95になっているE7C22IM0.10A以降はJEDEC規格32GBメモリ・モジュールを認識する可能性が高くなった。

検証はしていないので、保証はできないけど、E7C22IM0.10KのBIOSを使用している場合において、Crucialの「CT32G4DFD8266(DDR4-2666 32GB 2-Rank UDIMM)」を4枚使用した時、128GBで認識し、Windows 10のシステム情報でも「実装メモリ(RAM)」に「128GB」と表示されたという有志からの情報を得ている。認識していることと、実際のメモリ空間としてすべてのメモリ・アドレスを使用できるかどうかは関係がないので、運用してみた結果の続報を待たなければならないけど、少なくとも、モジュールをまったく認識しないということはなく、メモリ・モジュールへの投資そのものは無駄にはならないことだけは間違いない。

おまけ

「Favorite」メニューからデフォルト・ホームページを「M-FLASH」に設定することで、M-FLASHのメニュー画像だけ表示させることができた。面白いスクリーン・ショットが撮れたので載せておく。くれぐれも勘違いしないで欲しいんだけど、Z390-S01のM-FLASHは無効化されている。意外と、M-FLASHを実行できないようにインタフェースが制限されているだけで、M-FLASH本体のコードは残ってたりするんじゃないかな。BIOSから機能をまるごと削除するって控え目に言っても大変そうだし。

よくある質問

Q1. 自分のPCのBIOSと、記事記載のBIOSとはバージョン番号が異なるが、どちらが新しいBIOSか?

A1. マザーボードの型番は同じでも、メーカーの判断で改良やマザーボードに採用されているハードウェアの変更等に伴ってBIOSをまったく異なるものに変更することがある。情報はナマモノであり、記事に書いたそばから陳腐化していくものなので、記事記載のBIOSバージョンが最新とは限らない。枝分かれしたBIOSについては調べようがないため、バージョン番号がまったく異なる場合、どちらが新しいかはわからない。なお、記事記載のBIOSバージョンに誤記はない。


Q2. 最新のBIOSをダウンロードできるWEBページのURLを教えてほしい。

A2. リテール版として一般に販売されているマザーボードとは異なり、Z390-S01はOEMマザーボードであり、誰でもアクセスできる場所にBIOSが公開されているわけではない。マウスコンピューターから購入したPCの場合、ダウンロードのためには「U1~」から始まるシリアルナンバー(下図参照)をサポートページで入力することが必要で、サーチエンジンによる検索ではヒットしない場所にある。パソコン工房から購入したPCの場合、シリアルナンバーが「U3~」か「U4~」で始まっていたり、採番の方法が異なるため、同ページに入力してもダウンロードページが開けるとは限らない。

©Mouse Computer Japan

 

Q3. どこを探しても最新版のBIOSが見つからない。BIOSのバイナリ・ファイルを電子メールで送ってほしい。または、代理してBIOSを公開してほしい。

A3. 購入元の販売店からBIOSの更新を指示されていない場合、BIOSは更新しなくて良いという判断だと理解するべき。無理に最新版のBIOSを探し当てる必要はない。また、マウスコンピューターから正規の手段で購入したPCかどうか当ブログでは判断できないため、BIOSのバイナリ・ファイルを個別に送ることはない。BIOSを更新したことでトラブルが発生したとしても当ブログは責任を持てない。

また、BIOSが更新されるたびにバイナリ・ファイルを希望者全員に送付しなければならなくなるため、現実的ではないし、当ブログはそういったサービスを提供しない。不特定多数がアクセス可能な場所にBIOSを公開することもない。初心者が不用意にBIOSを更新しようとしてトラブルが続発する事態のほうが問題と考えている。

関連記事

参考資料

参考記事