旧メインPCのリフレッシュ後の性能

最終更新:2020/08/01

リフレッシュしたPCの性能を計測した。性能に関する記述がふたつの記事に分かれてしまったので、ひとつの記事にまとめなおした。

LightWave 2015

例によってLightWave2015でレンダリング時間を計測した。無限五の冷却性能に期待して、長期間電力制限を200Wに設定してコアクロックが4.6GHzで張り付くように設定してみたところ、サーマル・スロットリングも発生することなく、70℃台で完走した。

ハイパー・スレッディングはないものの、物理8コアの性能をいかんなく発揮していて、旧PCでは11分25秒かかっていたものが2分28秒で終わった。なんと、i9-9900Kを搭載したマウスのBTOパソコンの2分12秒にあと16秒まで迫る性能を示した。

LightWave 2015
CPU 総レンダリング時間 ラジオシティ時間 パフォーマンス 備考
Core i7-860 685.2秒(11分25秒) 91.2秒(1分31秒) 1.00倍 DDR3-1333
Core i9-9900K 132.4秒(2分12秒) 21.7秒 5.17倍 DDR4-2666
Core i7-9700K 148.9秒(2分28秒) 21.9秒 4.60倍 DDR4-3600

i9-9900Kは定格95Wで計測したもので、コアクロックは4.2GHzまでしか上がらなかった。マウスのBTOパソコンはCPUクーラーが非力で、コアクロックが4.7GHzになるように設定するとあっという間に90℃を超えてしまい、サーマル・スロットリングが働いてしまうので本来の性能を発揮できていないことが予想される。

BTOパソコンはパーツ交換を前提としていないので、CPUクーラーひとつ交換するにもマザーボードを取り外さなければならなかったり、分解するのは少々面倒だけど、CPUクーラーを風魔弐あたりに換装しようと心に誓った。

3DMark

もはや説明の必要もない3DMarkによるベンチマークのスコア。5954というネットに出回っている6000強というスコアより若干低い結果が出たけど、おそらく画面の解像度が1920×1200だったからか、ELSA製品は速度重視のオーバークロックではないからだと思われる。

PCでゲームはしないので、ベンチの結果は本当に参考程度。3DMarkは色々なベンチを計測できるけど、GeForce GTX 1660 Tiそのものが最新製品というわけでもないのであれこれとベンチを試して他製品と比較したりはしない。

仮想暗号通貨マイニング

3DCGをふんだんに使ったゲームを快適に遊べるかという尺度ではなく、ひたすら単調な計算を繰り返す単純な演算能力(いわゆるGPGPUの能力)を測るのであれば、仮想暗号通貨のマイニングをさせてみると3DMarkとは違った意味でシビアな結果を得られる。ここではイーサリウムで例示している。

MSI Afterburnerを使ってVRAMのメモリ・クロックを+750MHz(DDRなのでクロックの立ち上がりと立ち下がりの両方でデータを転送できるため、データレートは+1.5GHz)ほどオーバークロックし、13GHzにしたうえで消費電力を70%まで絞り、84W(定格120W)くらいでおおよそ28.5MH/sという速度を得られる。

これは1秒間にどのくらいのデータの塊を処理してハッシュ値を算出できるかの効率を示し、ハッシュレートと呼ばれる。「MH」は「メガハッシュ」と読み、暗号化や復号化の計算量のこと。データの塊の具体的な容量はアルゴリズムによって異なるため暗号通貨が異なると同じGPUでもハッシュレートの値は異なるし、同じ通貨でも演算の難易度は変動する。

Quadro P2000はオーバークロックできないので、75Wで15MH/sくらい。それと比較すれば、そこそこ速く、ワット・パフォーマンスも良い。

GeForce GTX1080が同様の設定をして126W(定格180W)くらいで36MH/sほどなので、GPUの数をいとわないマイニング・リグを組むならGTX 1660 Tiのほうがワット・パフォーマンスは良く、効率的に採掘できる。

ただし、日本国内では電気料金が安くなく、ワット・パフォーマンスの良いGPUを選んだとしても2020年現在ではマイニングをすればするほど赤字になるので、ベンチマーク程度に試すくらいにしたほうがいいと思う。

金銭が絡むと厄介事も多く、「あなたも簡単にマイニングできますよ」という甘い言葉で誘惑しておき、実際には演算能力の大半を盗み出し、自分は電気料金や器材に投資することなく仮想通貨だけを詐取するトロイの木馬が組み込まれたマイニング・ソフトウェアをインストールさせる悪質なユーザーもいるので注意が必要だ。

通貨というそれ自体に価値のあるものではなく、自分にも回り回って利益があるものとしては、治療法の確立していない病原体(ウィルス、細菌等)の遺伝子情報から薬剤の効果を分散コンピューティングでシミュレーションして新薬を開発することを目指したプロジェクトのほうが長い目で見ると有益だろう。

関連記事

Chromeリモートデスクトップを別ウィンドウで表示する

最終更新:2020/04/28

いつもやり方を忘れてしまうので、備忘録的に。この記事を書いている時点でのChromeのバージョンは81.0.4044.122。

Chromeリモートデスクトップはローカル・アプリケーション版が終息した。リモート・デスクトップがChromeに統合され、ローカル・アプリケーションを起動しようとすると次のような画像が表示されてしまってまったく操作できなくなる。

ローカル・アプリケーション版はChromeブラウザとは独立したインターフェースで動作していたので、Windows標準のリモート・デスクトップのような感覚で使えて便利だった。また、ホスト側が必ずしもWindows 10 Proである必要はなく、Win 10 Homeをホストとして接続できるのも利点だ。

そこで、ひとまずChromeリモートデスクトップの拡張機能を追加したうえで、次の画像のとおりに通常どおりにChromeリモートデスクトップをタブ・ブラウザの中に起動する。

次に、Chromeの右上にある「︙」をクリックし、設定メニューを開く。その中の「Chrome Remote Desktop で開く」を選択する。

すると、Chromeのブラウザからリモート・デスクトップのウィンドウだけが独立し、タイトルバーのデザインが変わる。アプリケーション版Chromeリモートデスクトップと似たようなインターフェースで使用できるようになる。

旧メインPCのリフレッシュ (2)

最終更新:2020/05/19

2019年6月からパーツを集め始め、7月に組み換えたリフレッシュ済み旧PCも半年ほどが過ぎた。古くていつ壊れてもおかしくないような電源を交換し、グラフィックス・カードを追加した。

グラフィックス・カードはなくてもCPUの内蔵グラフィックスで画面は映るのでともかく、電源は不具合を起こした場所によっては過電流や過電圧を吐き出して主要パーツを巻き込んで故障がPC全体に波及してしまうため、交換は急務と言えた。

それほど大きく見た目は変わっていないけど、グラフィックス・カードを追加したのでケース内の密度が増した。グラフィックス・カードのバックプレートの裏側にデザインされた「ELSA」のロゴがLEDに照らされてぼんやり見えるのが格好いい。

電源

電源は自作PCユーザーの間では定評のあるSeasonicのラインナップから、セミモジュラー・プラグイン電源のFOCUS GOLDの650W(SSR-650FM)にした。日本国内の輸入代理店はオウルテック(Owltech)。

AntecのNeoECO Goldシリーズが実はSeasonicのOEMだというのは有名な話で、1万円前後で750W電源が買えるというお得さも手伝って大人気なのは知っていた。

でも、電源ユニット本体はSeasonicグレードなのかもしれないけど、安価なスリーブ・ベアリングのファンを使っていたり、プラグイン用のケーブルの出来があまり良くなかったり、SATA電源プラグの向きが反対だったり、安いのには安いなりの理由があるらしかった。電源にこだわりだすとキリがないんだけど、SSR-650FMはまだ安いほう。

Seasonic FOCUS GOLD 650W(SSR-650FM)の外箱。電源を撮影してもあまり面白くないので、中身の撮影まではしなかった。

電源を替えたところで何か変わるとは思えなかったんだけど、明確に変わった点がひとつあった。

旧電源を使っていた時はCPUクーラーのファンから時々擦れるような音がして結構耳障りだったんだけど、ファンのベアリングがぶれてるのかな、と簡単に考えていた。ところが、Seasonicの電源に交換してからはまったくその音がしなくなったのだ。

旧電源が作られた頃にはまだPWM制御のファンが一般的でなかったせいもあるかもしれないし、交流を整流して直流を出力する電源の電圧には少なくとも揺らぎがあり、やはり品質の差が出る。その辺はさすがSeasonicのGold電源といったところだろう。

次の画像は、取り外した今まで使っていた電源。OVP(Over Voltage Protection)、OCP(Over Current Protection)、OPP(Over Power Protection)、SCP(Short Circuit Protection)といった保護回路を備え、2020年現在も現役として使うには必要最低限の能力を持っている。古くて12Vが2系統ある電源の割には、Core i7-9700Kのオールコア5.0GHzオーバークロック(定格は4.6GHz)に耐えるなど、意外と優秀だった。

mouse computerのネズミの尻尾が出ている旧ロゴが入った500W電源。「Model: MCH500AT」と大きく書いてあるけど、それで通用するのはマウスの中だけ。実際の型式番号は左下に小さく「HEC-500TE-2WX」とちゃんと書いてある。製造会社は存在しているようだけど、日本ではHECの電源は聞かなくなった。一応、80PLUS(Standard)電源。
ATX12V ver2.3 電源供應器::HEC COMPUCASE Enterprise Co., Ltd

Fractal DesignのDEFINE R6は電源が底面配置でファンを上向きにするので気が付いたんだけど、移植当時からファンの回転が不安定だった。いつの間にか、ファンがまったく回らなくなり、さすがに寿命を迎えたと思い、旧メインPCにはあまり電源を入れないようにしていた。

80PLUS GOLD認証取得 高効率高耐久電源ユニット NE650 GOLD
posted with AmaQuick at 2020.04.26
参考価格: ¥9,980 (2020-04-26)
Antec (2017-12-23)

グラフィックス・カード

グラフィックス・カードのメーカーにも色々あるけど、個人的にはELSAの製品が好きで、可能ならばELSAから選ぶことにしている。価格は安くないけど、品質管理が徹底しているため不良品が少なく、安定性に優れているからだ。Quadroで慣れていて信頼しているからというのもある。

他社製品は選別チップを使って最初からオーバークロックしてあるものも多いけど、トリプル・ファンでマザーボードの幅よりも長かったり、2.5スロット厚だったりと大型製品が多い。ELSAはオーバークロックは仕様に含まれていない代わりにファンはハイエンド・モデルでも基本的にデュアル・ファンで2スロット厚以下とコンパクトに設計されているのも自分好みの点だ。

ついでにELSAはLEDで光ったりしないのもありがたい。イルミネーションをつけると電飾が地味な割に点灯を制御できるマザーボードを選んでしまったり、あまり良いことがないのでGPUを光らせることにあまり魅力を感じない。グラフィックス・カードにイルミネーションをつけるなら、SAPPHIREくらいやって欲しいところだけど、ファンそのものが光るグラフィックス・カードというのは驚くほど少ない。

とはいえ、ELSAのGPUは少々価格が高めなのは事実なので、中古で良い物が出ていないか定期的に調べていた。中古というと、新しいものでも大抵GeForce GTX 1050からGeForce GTX 1080あたりのものが多いんだけど、根気よく待っていたらGeForce GTX 1660 Tiの中古が入荷したので他のユーザーが購入する前に注文した。価格的には無印のGeForce GTX 1660の新品よりも安く手に入ったので良い買い物ができた。

中古なので、外箱は少々くたびれている。比較的新しい製品のはずだけど、空き箱の保管方法があまり良くなかったのかもしれない。最近のグラフィックス・カードのドライバはダウンロードが前提で、メディアがついていないので基本的に本体だけあればよく、付属品が欠品していても問題ない。

日本人は中古品が嫌いな人もいるけれど、中古ということはまともに動いていたことは証明済みだとも言えるし、ショップでも動作確認をしているので、初期不良の心配が新品よりも少ないという利点がある。開封したら中古になってしまうので、新品の動作確認はしないのが普通だからだ。

次の画像は、グラフィックス・カード本体を取り出してみたところ。全面真っ黒で直角という潔さと渋さがいい。デザインは性能にあまり関係ないけど、他社製品のような突起の多いデザインは好きではない。見た感じは非常に綺麗で、中古でもまったく問題ないように思える。直角デザインというとあとはSAPPHIREくらいだけど、AMDのGPUしか採用していないのが非常に残念だ。

グラフィックス・カード本体。バックプレートには大きく斜めにはみ出すくらいに「ELSA」と書いてあり、それがなかなか格好良かったりする。ASUSの鋭い目や、MSIのドラゴンのデザインより自分好みだ。
ELSA エルザ GeForce GTX 1660 Ti S.A.C グラフィックスボード VD6979 GD1660-6GERTS
posted with AmaQuick at 2020.04.24
参考価格: ¥37,609 (2020-04-24)
エルザ (2019-06-07)

HDD

ついでにHDDも交換した。DiskStation DS218j(NAS)を8TBまで増強した時に余ったWD Blue(WD40EZRZ)に変更。NASを経由してデータ・ドライブを同期する際に、従来のWD Blue 500GBだとさすがに心許ないので、DAIVに搭載されているHDDと同じ4TBまで増強しておいた。

日立の250GB HDDと、そのバックアップ用に使っていたIDE接続の250GB HDDはそのうち退役させようと思う。さすがに3.5インチにしては容量が少なすぎて他に転用しようがないし、中古で売りに出すには古すぎる。ビックカメラに持っていくとHDDを物理的に破壊してくれるらしい。

Western Digital HDD 4TB WD Blue PC 3.5インチ 内蔵HDD WD40EZRZ-RT2 【国内正規代理店品】
posted with AmaQuick at 2020.04.25
参考価格: ¥8,310 (2020-04-25)
Western Digital (2018-01-01)

新構成

変更後、構成は次のとおりになった。若干古いパーツも混じっているけど、旧メインPCから格下げされたサブPCなので2.5″ SATA SSDでも特に困ってない。

新構成一覧
項目 メーカー 品名 仕様 備考
マザーボード ASRock Z390 Extreme4 Z390チップセット
Intel I219V GbE
Realtek ALC1220
NCT6791D
CPU Intel Core i7-9700K SRELT (P0)
CPUクーラー Scythe Mugen 5 TUF SCMG-5100TUF 無限五 Rev.B
RGB LED仕様
メモリ G.SKILL Trident Z RGB
F4-3600C19Q-32GTZRB
DDR4-3600 UDIMM
19-20-20-40
SK Hynix C-die (18 nm)
グラフィックス1 Intel Intel UHD Graphics 630 DisplayPort 1.2×1
HDMI 1.4×1
VGA×1
グラフィックス2 ELSA GeForce GTX 1660 Ti S.A.C
GD1660-6GERTS
DisplayPort 1.4a×3
HDMI 2.0b×1
新設
SSD crucial BX200
CT240BX200SSD1
2.5″ 240GB SATA3 旧PCから移設
HDD1 Western Digital WD40EZRZ-RT2 4TB SATA3 5,400rpm 交換
HDD2 HGST HDT725025VLA380 250GB SATA 3Gbps 7,200rpm 旧PCから移設
光学ドライブ LG HL-DT-ST GH24NS50 SATA
DVDスーパーマルチ
旧PCから移設
電源 Seasonic FOCUS 650W SSR-650FM 650W 80PLUS Gold
ATX Ver.2.4
EPS Ver.2.92
セミモジュラー
交換
PCケース Fractal Design DEFINE R6 USB-C BKO TG

性能

3DMark

もはや説明の必要もない3DMarkによるベンチマークのスコア。5954というネットに出回っている6000強というスコアより若干低い結果が出たけど、おそらく画面の解像度が1920×1200だったからか、ELSA製品は速度重視のオーバークロックではないからだと思われる。

PCでゲームはしないので、ベンチの結果は本当に参考程度。3DMarkは色々なベンチを計測できるけど、GeForce GTX 1660 Tiそのものが最新製品というわけでもないのであれこれとベンチを試して他製品と比較したりはしない。

仮想暗号通貨マイニング

3DCGをふんだんに使ったゲームを快適に遊べるかという尺度ではなく、ひたすら単調な計算を繰り返す単純な演算能力(いわゆるGPGPUの能力)を測るのであれば、仮想暗号通貨のマイニングをさせてみると3DMarkとは違った意味でシビアな結果を得られる。ここではイーサリウムで例示している。

MSI Afterburnerを使ってVRAMのメモリ・クロックを+750MHz(DDRなのでクロックの立ち上がりと立ち下がりの両方でデータを転送できるため、データレートは+1.5GHz)ほどオーバークロックし、13GHzにしたうえで消費電力を70%まで絞り、84W(定格120W)くらいでおおよそ28.5MH/sという速度を得られる。

これは1秒間にどのくらいのデータの塊を処理してハッシュ値を算出できるかの効率を示し、ハッシュレートと呼ばれる。「MH」は「メガハッシュ」と読み、暗号化や復号化の計算量のこと。データの塊の具体的な容量はアルゴリズムによって異なるため暗号通貨が異なると同じGPUでもハッシュレートの値は異なるし、同じ通貨でも演算の難易度は変動する。

Quadro P2000はオーバークロックできないので、75Wで15MH/sくらい。それと比較すれば、そこそこ速く、ワット・パフォーマンスも良い。

GeForce GTX1080が同様の設定をして126W(定格180W)くらいで36MH/sほどなので、GPUの数をいとわないマイニング・リグを組むならGTX 1660 Tiのほうがワット・パフォーマンスは良く、効率的に採掘できる。

ただし、日本国内では電気料金が安くなく、ワット・パフォーマンスの良いGPUを選んだとしても2020年現在ではマイニングをすればするほど赤字になるので、ベンチマーク程度に試すくらいにしたほうがいいと思う。

金銭が絡むと厄介事も多く、「あなたも簡単にマイニングできますよ」という甘い言葉で誘惑しておき、実際には演算能力の大半を盗み出し、自分は電気料金や器材に投資することなく仮想通貨だけを詐取するトロイの木馬が組み込まれたマイニング・ソフトウェアをインストールさせる悪質なユーザーもいるので注意が必要だ。

通貨というそれ自体に価値のあるものではなく、自分にも回り回って利益があるものとしては、治療法の確立していない病原体(ウィルス、細菌等)の遺伝子情報から薬剤の効果を分散コンピューティングでシミュレーションして新薬を開発することを目指したプロジェクトのほうが長い目で見ると有益だろう。

関連記事

JettoBevel – LightWaveプラグイン

最終更新:2020/05/03

オブジェクトの角の面取りや丸めについてはかなり前に触れたことがあるけど、ラウンダー(Rounder)ツールや、LW 11で追加された面取り(Chamfer)ツールでは思ったような加工や正確な加工ができないことがある。

オブジェクトの形状が単純なうちはいいけれど、かなり複雑になってからラウンダーやチャムファーを使うと座標の演算中に処理不能に陥ってモデラーがクラッシュしてしまうことも珍しくない(ミドルレンジの3DCGソフトウェアの限界というか、宿命のようなもので、欠陥とまでは言えない)。

そこで、ネットを調べていたら、JettoBevelというプラグインを知った。最近はYouTubeで使い方の解説動画がアップロードされていることも多く、プラグインの機能をイメージしやすくなった。なお、「Jetto」というのは作者のニックネームのようなもので、特に深い意味はないようだ。

JettoBevelの概要

ベベル(標準機能)

標準機能のベベル(Bevel)では、一度に1段階しかセグメントを増やすことができない。しかも、複数のポリゴンを選択した場合、各ポリゴンごとにベベルがかかってしまうため、実用的でない部分があった。インターフェースが簡便で理解しやすいのは長所。

ベベル・ツール
ベベルツールの数値入力画面。シンプルで解りやすいインターフェースを持つ。シフトとインセットは説明するまでもないだろうけど、その間にある「+ / -」という設定項目はシフト量やインセット量をランダムで増減する範囲を指定するためのもの。機械のようなモデリングよりも、植物のような長さが一定でないものを作る時に使う。

マルチシフト(標準機能)

複数ポリゴンをベベルしたい場合はマルチシフト(Multishift)ツールを使うことになるけど、パラメータが多く難解なうえ、一度に1段階しかセグメントを増やせない特徴は同じ。複数段追加したければ、プロファイルを自分で作成しなければならないなど非常に扱いづらい。

マルチシフト・ツール
マルチシフトの数値入力画面。インセット量とシフト量はベベルと同じなのでまだ理解できるけど、その他のパラメータはいまひとつ理解できていない。

JettoBevelの特徴

LightWaveのモデラーはサブパッチ(キャトマル)によるモデリングに都合が良いように進化してきた部分があり、機械のようなかっちりした形状のモデリングに弱いという問題がある。でも、機械のモデリングをしていると、ベベルを複数セグメントにわたって連続してかけたいという事態や欲求というのは往々にして起こる。

このJettoBevelでは、マルチシフトをベースとして、ベベルのように単純なパラメータを設定するだけで半自動的に複数セグメントのベベルを再帰的に一度に追加可能なうえ、ベベルをかけたポリゴンに更にベベルを続けてかけられるようにインターフェースが工夫されている。

LightWaveは今ではBlenderなどに押されてマイナーな3DCGソフトウェアになってしまったけど、過去には多くのユーザーに支持されていたものなので、ユーザー・プラグインが多数開発されていて、資産として今でも公開されている。

LightWave Assets : Plugins – JettoBevel

JettoBevelを使った角の丸め

まずは簡単な角の丸めをやってみる。次の画像のような直径1mの円柱を用意してみた。

JettoBevelを起動すると、次の画像のようなパネル・ウィンドウが表示される。ここで、ベベルの「Type」を「Circle」に、「Shift」と「Inset」に100mm、「Segment」に「4」と入力する。セグメントの右にある円弧状のボタンはベベルをどちら側に膨らませるかを指定する。

入力が終わると、プレビューで完成後の状態が確認できる。次の画像のように4段階のセグメントを持つ丸みを持ったベベルが追加されているのが判る。

このくらいなら、ラウンダーでも同じことはできる。そこで、先ほどベベルをかけたポリゴンに更にJettoBevelを適用する。設定はほとんど同じで、円弧を反対向きに変えただけ。

適用すると次の画像のようになる。想像どおりの結果なので驚くべきところはないように思えるけど、この時点でラウンダーで同じことを行うのは厳しくなってくる。ラウンダーはあくまでも選択したエッジを丸めるものなので、ラウンダーを適用済みのセグメントをベベルのように追加できるわけではない。

更に2段階、JettoBevelでセグメントを追加して、普通のベベルで円柱を伸ばした状態。棒に溝を切ったような、一見簡単なように見えるオブジェクトではあるんだけど、これと同じようなことを行いたければ、標準機能では回転体ツールなどを利用するなどして、セグメント数などをあらかじめ綿密に決めておかなければならない。

回転体ツールというのは、意外と曲者で、半分の形から最終形を予測しながらモデリングしなければならないため、やってみたら思ったような形にならなかった、というのも珍しくなく、面白いツールではあるんだけど、それほど出番は多くない。

ひとまずディスク生成ツールでセグメントだけ切っておいて、ストレッチ(Stretch)や拡大縮小(Scale)ツールなどを使って直径を調整して綺麗な半円形の溝を作るというのも人間には辛い作業だ。いちいち三角関数を使って電卓で計算しながら縮小率を求める労力を考えるとぞっとしない。できればそういう計算はコンピュータにやってもらいたいところだ。

LightWaveのモデラーは行き当たりばったりモデリングができるのが良いところという部分もあるため、あらかじめ出来上がりを決めてからモデリングを始めるというスタイルがそもそもソフトウェアの特性とマッチしていない。

JettoBevelによる穴の刳り貫き

JettoBevelは、オブジェクトの角をあらかじめ丸めておきたいという目的を叶えるのに十分な能力を持っている。でも個人的には、その真価はおそらく、複雑な形状の穴を開けたい時に発揮されると思っている。

次の画像のように、少し複雑で、複数のポリゴンにわたる範囲に穴を開けたいとする。普通ならば、拡張プラス(Extender)を使ってマイナス方向にシフトさせることで実現するくらいしかないわけだけど、角が鋭角になってしまう。

機械部品の角というのは旋盤やフライス盤で特注で切削したとかでなければ、直角や90度未満の鋭角というのはほとんどありえない。量産性を考慮すると、型ばなれのいいように直角以下の角を作らないようにするのが一般的。鋭角がない部品は同時に安全性にも優れている。したがって、鋭角が多いモデルはいかにも現実に存在しそうにないものになる。

余談
その昔、携帯電話のauが「au design project」という名称でデザイナーズ・ケータイを作っていたことがあり、他のケータイが曲線を多く取り入れた貝殻のような二つ折りデザインを採用していた時代に直角デザインを採用したことがあった。
そのデザインを見たメーカーの担当者がauに「本当に直角で作るんですか? いや、そうですよね、それに意義があるんですよね…」と趣旨には理解しつつも直角加工に難色を示したことが逸話として残っている。
上でも書いたように、直角の部品はプラスチック射出成形機の金型からの型ばなれが悪く、量産性が極めて悪くなるのでメーカーとしては本当は勘弁して欲しかったはず。実際には、メーカーの努力によって直角デザインのケータイを量産することに成功した。その方法は企業秘密にあたるため、今でも明らかにされていない。
その後、それらのauケータイは工業デザインとしての優秀さが高く評価され、MoMAの愛称で知られるニューヨーク現代美術館に永久収蔵品として所蔵されるまでに至っている。

これにJettoBevelを使って、4段階ほど適用してやると、穴の周囲を丸めることができるばかりか、内側に入ったところで底に向かって広がっていく複雑な穴を実現することができる。

こういった形状は昔のF1マシンやジェット戦闘機のエア・インテークによく見られた。過去の自動車や飛行機は操縦系統のほぼすべてを油圧で制御していたため、オイルを冷やすための空気の取り入れ口が数多く必要だった。

現在では操縦系の電子化が進み、燃焼系と冷却系で2~3つ大きい穴が開いているくらいになった。自動車はオイルを冷やす需要が減ったことと空力特性の向上が理由だけど、飛行機には別の事情がある。

エア・インテークは対空レーダーにとても映りやすいため、ステルス性の向上を目的として空気取り入れ口を極力減らし、レーダーの電波がエア・インテークに入り込まないようにする方向に進化している。近年のステルス戦闘機の表面が凹凸が少なくのっぺりしていたり、直角がなく、45度くらいの角が多いのはすべてレーダーに映りにくいようにするため。ただし、空力特性は劣悪で、電子制御であるフライ・バイ・ワイヤがなければまともに飛ぶことすらできない。油圧で代替することもできないため、電子制御系に故障が発生すると即座に墜落してしまうという極めて危ういバランスで成り立っている。民間機の場合はフライ・バイ・ワイヤが三重系統になっているうえ、単位面積あたりの翼面荷重が低いため、滅多なことでは墜落はしない。

上の例のように、単純な円柱などなら三角関数を駆使すればいつかは完成するかもしれないけど、標準機能だけでこのような穴を作ろうとしたら、どうしたらいいのか見当もつかない。少なくとも、電卓で座標を計算していたのではいつになっても終わりそうな気がしない。

作例

まだ完成はしていないけど、JettoBevelを使うきっかけになった作品。ティレル・P34(当時の発音では「タイレル」)というF1史上空前絶後の6輪マシン。投入直後にワンツー・フィニッシュを飾るなど一定の成果を修めたため、F1のレギュレーションに「車両の車輪は4輪まで」という項目を加えさせた伝説が残っており、その強烈なシルエットも手伝って幅広い世代に知られている。スケール・モデルで知られる田宮模型が実車を保有していることでも有名。

基本的に角をとるのが目的なのでどこに使われているのかはわかりにくいかもしれないけど、直角以下の鋭角が目に見えて目立つようでなければJettoBevelの効果は出ていると言える。

関連記事

参考記事

VAIO type T (VGN-TT50B) をSSD化

最終更新:2020/05/29

前回の記事ではVAIO type T (VGN-TT50B) にWindows 10がインストールできることを確認した。HDDからのOS起動の遅さも再認識した。

しばらく運用してみたけど、OSの起動の遅さだけはどうにも許容できない。

分解・換装は自分には敷居が高いように思えたので、ネットでSSD搭載のノートPCを探してみたけど、中古でも3~4万円はする。調べた限りではLenovoのThinkPadシリーズがメンテナンス性が高い構造のうえ、分解や部品交換の手順を記したサービス・マニュアルが公開されているため、メモリやストレージの増設や故障時の延命がしやすいらしい。

絶対価格としては決して高額ではないけど、3~4万円でも支払う効果や必要性が十分にあるのか悩んでしまった。要は使う場所を選ばない「可搬端末(コンソール)」が欲しいわけで、高い処理能力や何でもこなせる汎用性を求めているわけではない。

ノートPCの分解にはやや不安があるけれども、10年以上前のPCということで、もし壊してしまってもそれほど惜しくはないし、このまま放置していてもゴミになるだけのものだ。うまくいけばそれはそれで自分の苦手を克服してスキルも上がるというわけで、予算1万円でVAIO type TをSSD化することに決めた。

mSATA SSD

VAIO type Tのストレージは1.8インチのフォーム・ファクタなので、できるだけ小型の規格である必要がある。M.2 SSDでもいいんだけど、Type 2280(22×80 mm)がもっとも普及しているので、Type 2230 / 2242 / 2260といった小型のものは最新規格の割には入手性が良くなく、容量に対して割高なこともある。

そこで、mSATA規格のSSDから選ぶことにした。大きさもおよそ30×50mmと1.8インチHDDよりも十分小さい。メーカーの選択の余地はほとんどなく、メジャーなところではKingstonかTranscendしかない。Amazonの商品検索では聞いたことのないブランドの製品も見つかったけど、価格が安い代わりに性能や既存機器との相性に問題があるようで、選択肢にはなりそうになかった。

Kingstonは無難な製品を作っているという印象があったので、価格が手頃だったこともあり、当初はKingstonで考えていたけど、レビューなどを読むといまひとつ評判が良くない。

TranscendはSDRAMなどでよく聞くブランドではあるんだけど、たまたま使う機会がなかったため自分の中で実績がなく、積極的に選ぶ理由がなかった。ところが、Transcend製のmSATA SSDは非常に評判が良く、Kingstonで問題があった人がTranscendに替えてみたところ問題が解消したため、Transcendを推奨すると断言している記事もあった。

Transcend mSATA SSD 256GB SATA-III 6Gb/s DDR3キャッシュ搭載 3D TLC 採用 TS256GMSA230S
posted with AmaQuick at 2020.04.09
参考価格: ¥6,980 (2020-04-09)
トランセンドジャパン (2019-06-28)
キングストンテクノロジー SSD 240GB mSATA SATA3 3D NAND搭載 UV500 SUV500MS/240G
posted with AmaQuick at 2020.04.10
参考価格: ¥5,920 (2020-04-10)
キングストンテクノロジー (2019-06-28)

現在は後継のM.2に取って代わられてしまったため、mSATAソケットを標準搭載しているマザーボードも見かけなくなった。主な需要は修理用部品くらいしかないマイナーなジャンルの商品になってしまったのでおのずと通販になる。

Amazonから注文したところ、こんな感じのパッケージに入ったmSATA SSDが届いた。内容物が損傷しない程度の強度を持ちながらも簡易的な包装で、裏面にミシン目をつけてあって開封もしやすいように工夫されている。

TranscendのmSATA SSDのパッケージ。日本のPC関連パーツは大きすぎる樹脂製のパッケージをシールで封印したり、ホチキスのような硬い針で固定されていたりして厳重すぎるうえに開封がしにくい傾向があるので、このような工夫を施したパッケージを作っていくといいんじゃないかと思った。使い捨てのプラスチック包装は世界的に削減する方向にもあるわけだし。

mSATA – MicroSATA変換アダプタ

通常、1.8インチ・フォーム・ファクタのHDDやSSDはMicroSATA(μSATA)を採用しているため、mSATAをMicroSATAに変換する基板が必要になる。この種の変換基板は意外に需要があるため数多く出回っているけど、粗悪品が多いのも事実。

この種のパーツは主に中国製で、「Made in China」と書かれているだけで敬遠されてしまう傾向があるけど、有名ブランドのマザーボードやグラフィックス・カードなども今や中国で製造されているものがほとんどなので、ブランド品であるかノーブランド品であるかを問わず、中国製を避けるのはほぼ不可能。要は、品質管理をちゃんとやっているかどうかが重要なわけで、Amazon以外で販売されているところの情報も調べると効果的だ。

いくつかあった変換基板の中で、「NFHK」という聞いたことのないブランドが目に付いた。中国版Amazonとも言えるアリババ社のAliExpress.comで調べてみたところ、インターフェース規格を変換する製品で著名なブランドらしく、かなり手広く手掛けているようだった。

US $1.5 |MSATA ssd 1.8 インチマイクロ SATA mSATA ssd 1.8

ただ、本家では本体が1.5~2.0ドルで売られているもので、日本への配送料は5.0ドルとなっているので、Amazonでの価格の500円分くらいは送料だと考えていいようだ。

mSATA(Mini SATA)→1.8インチmicro SATA変換アダプタ
posted with AmaQuick at 2020.04.10
参考価格: ¥785 (2020-04-10)
mind pc parts

MicroSATAには5 Vの電源入力があるけど、mSATAには3.3 Vの電源入力しかない。mSATAには次の表に示すMini PCIeと共通の52ピンの端子があるけど、フルサイズのSATAでも22ピン(データ 7ピン+電源 15ピン)しか必要としないため、未接続の「NC(Not Connected)」が目立つ。

mSATA及びmini PCIe Cardのピンアサイン
Pin mSATA mini PCIe Card Pin mSATA mini PCIe Card
P1 NC WAKE# P2 +3.3V +3.3V
P3 NC Reserved P4 GND GND
P5 NC Reserved P6 NC +1.5V
P7 NC CLKREQ# P8 NC UIM_PWR
P9 GND GND P10 NC UIM_DATA
P11 NC REFCLK- P12 NC UIM_CLK
P13 NC REFCLK+ P14 NC UIM_RESET
P15 GND GND P16 NC UIM_VPP
P17 NC UIM_C8 P18 GND GND
P19 NC UIM_C4 P20 NC Reserved
P21 GND GND P22 NC PERST#
P23 SATA Differential TX+
based on SSD
PERn0 (RX-) P24 +3.3V +3.3Vaux
P25 SATA Differential TX-
based on SSD
PERp0 (RX+) P26 GND GND
P27 GND GND P28 NC +1.5V
P29 GND GND P30 NC SMB_CLK
P31 SATA Differential RX-
based on SSD
PETn0 (TX-) P32 NC SMB_DATA
P33 SATA Differential RX+
based on SSD
PETp0 (TX+) P34 GND GND
P35 GND GND P36 NC USB_D-
P37 GND Reserved P38 NC USB_D+
P39 +3.3V Reserved P40 GND GND
P41 +3.3V Reserved P42 NC LED_WWAN#
P43 GND Reserved P44 NC LED_WLAN#
P45 Vendor Reserved P46 NC LED_WPAN#
P47 Vendor Reserved P48 NC +1.5V
P49 DAS/DSS Reserved P50 GND GND
P51 Presence Detection Reserved P52 +3.3V +3.3V

このような電源仕様の相違のため、変換基板には降圧用のレギュレータが実装されている。このレギュレータが基板の表に実装されていたり、裏に実装されていたり特に決まりがない。そのうえ、商品写真では表に実装されているように見えるのに、送付されてきた変換基板には裏にレギュレータが実装されていて購入者の不評を買うことも日常茶飯事だ。レギュレータが裏に配置されていても機能上は問題ないけれど、レギュレータの高さの分だけスペースをとるため、設置場所によっては致命的な問題になる。

そのへん、NFHKは誠実なメーカーらしく、届いた変換基板は商品写真とまったく同じものが届いた。基板の端に書かれている型式番号が「N-1831V1」か「N-1831V2」となっていれば、NFHKの製品と見て間違いないようだ。もちろん、基板の印刷もすべて巧妙にコピーしている模倣品がないとも言い切れないんだけど。

基板右上に見える黒い素子が降圧用レギュレータ。mSATAのソケットやMicroSATAのコネクタがそれなりに高さのあるものなので、表側にあったほうが何かと有利。どういった理由かはわからないけど、裏面にレギュレータを設置している変換基板も多い。

次の画像は変換基板にmSATA SSDを組み付けたところ。M.2と似ていて、斜め上から押し込んでSSDのネジ穴のあるほうの端を押し、コネクタをソケットの奥まで挿入させてからネジ留めする。ネジはとても小さいので、+0か+00の細軸のドライバーがあると便利。

分解・換装

分解は基本的に、次のブログの記事を参考にすればそれほど苦労しない。

キーボードを外す時に無理なテンションがかかっているな、と感じる時はほぼ100%ネジの外し忘れが原因。外し忘れを防ぐコツとしては、ネジは分解の解説画像をよく見ながら端から順序よく数を数えつつすべて外してからキーボードを取り外すようにする。おそらく分解が初めてでも30分くらいで分解できる。

ただ、ひとつだけどうやって分解したらいいのかわかりにくかったところがあったので、記録しておく。次の写真はキーボード・ユニット(緑色の部分)を取り外して手前に裏返したところだけど、本体と切り離す方法で悩んでしまった。

青色の矢印で示した透明の板の下にあるコネクタに木製か樹脂製のヘラを差し込んでテコの原理で剥がしてやれば簡単に外れるんだけど、そんなところにコネクタがあるとは知らなかったので、キーボード・ユニット側をいじってしまった。

キーボード・ユニット側のコネクタはZIF(Zero Insertion Force)といって、ケーブルを差し込む力が必要なく、カバー(レバー)を押し下げることで固定する一種の圧着端子になっている。ただ、ちゃんとケーブルがささっているのか見た目でわかりにくいのが欠点。VAIOのZIFはフリップロック方式で、カバーを回転させるタイプのもの。挿入確認のためにケーブルを引っ張ったりしてしまうとカバーが回転軸から外れたりしてコネクタを損傷させてしまうこともあるため、非常に苦手なコネクタのひとつ。

次の画像は取り外した1.8インチHDD。HDD本体に衝撃が伝わりにくいようにラバー製のクッションが両側(画像では上下)に取り付けられていた。

取り外した1.8インチHDD。当時は小型HDDで業界最高水準の技術を持っていた東芝の製品だった。現在ではタブレットPCというジャンルが登場したことで光学ドライブが必須ではなくなったり、M.2をはじめとするSSDが一般化したこともあり、ノートPCの内部に余裕ができた。そのため、2.5インチHDDでも実用上問題なくなり、無理にHDDを小型化する必要性も薄れたため、一般用途では1.8インチHDDの出番はほぼなくなった。

効果

VAIO Type Tが発売された頃のSATA規格はSATA 2だったので、転送速度は3Gbps。SATAは8b/10bエンコードでデータをシリアル転送するため、1バイト(= 8ビット)の論理データを送るために10ビットの物理データを送る必要がある。なので、物理転送速度が3Gbpsの場合、送れる論理データの理論上の最高転送速度は300MB/sとなる。

CrystalDiskMark 7.0.0で計測してみたところ、シーケンシャル・リードで284MB/sと十分な性能を引き出せた。mSATA – MicroSATA変換アダプタも問題なく動作しているようだ。OSの起動も目に見えて速くなり、CPUやメモリが同じ物を使っているとは思えないくらいになった。

換装する前のHDDの計測を忘れてしまったので今から比較するのは難しいけど、そもそもHDDとSSDを比較する意味があるのかどうかはかなり微妙。

HDDが遅いのは単にデータの転送速度だけの問題ではなく、ファイルの先頭を頭出しする時間である平均シーク・タイムが無視できないくらいに長いからだ。それに対し、SSDはシーク・タイムをHDDの1000分の1以下のオーダー、つまりほぼ無視できるくらいに短くできることに最大のメリットがある。

5,400 rpmのHDDの場合、平均シーク・タイムは約5 msになる。5 msは1秒の200分の1なので人間にとっては十分短いけど、1.0 GHzで動作するCPUにとっては500万回のクロックを刻めるだけの時間であり、最短のマシン・サイクルを持つ命令であれば500万の命令を処理できる時間。最近は4.0GHz以上で動作するCPUも珍しくないので、CPUの尺度からするとHDDのシーク・タイムは気が遠くなるほど遅い。特にファイルへのアクセスが集中するOS起動時は絶望的な遅さになる。

何はともあれ、当初の目的であったSSD化には無事に成功したので、あと1年くらいは可搬端末として使えるだろう。その間に可搬端末の有用性はいかほどのものか判断がつくだろう。また、今の仕様では不満な点が出てくれば、その時こそ、より新しい型の高性能ノートPCを購入すべきか考える時だろう。

トラブル発生

2020年5月19日、何気なくVAIOを起動しようとしたら、Windows 10が起動しなくなった。ログイン画面のままフリーズしてしまい、キーボードやタッチパッドの操作も一切受け付けない。BIOS設定画面を呼び出すとキーボードなどはちゃんと動作するので、ハードウェアの故障の可能性は低い。

仕方ないので、Windowsをもう一度クリーンインストールしてみたら、異様にインストールが遅い。CPUがCore2 Duoだからだろうかと軽く考えて辛抱強く待ってみたけど、1時間以上かかった。初期設定も普通は失敗なんて起こりそうにないところで設定失敗が多くなり、異常なまでに時間がかかる。さすがにおかしいと思い始めた。

そこで、CrystalDiskMarkでSSDの速度を測定してみた。

遅い。異常なほど遅い。読み込みは150MB/sあるので百歩譲ってよしとしても、書き込みが0.42MB/sというのはちょっとありえない。HDDと比べても遥かに遅い。

ネットで調べてみたら、原因としては次のようなものが見つかった。どこも同じようなことしか書いてないのであまり参考にならなかった。

  1. BIOSの設定がAHCIモードではなく、IDEモードになっている。
  2. 4Kアライメントがずれている。
  3. SATA3ポートではなく、SATA2ポートに接続している。
  4. サードパーティ製のSATAコントローラに接続している。
  5. SATAケーブルの破損
  6. SSDの故障

1つ目は、そもそもBIOSにそのような設定項目がないので、自動的にAHCIモードが選ばれる。デバイス・マネージャで調べてみても、「SATA AHCI Controller」と表示されるので疑いようの余地がない。仮にIDEモードだとしてもSSDの書き込みが0.42MB/sというのはありえない。

2つ目は、パーティションの開始がSSDの読み書きの単位である4,096バイト(4KB)からずれているという問題のこと。今時のWindowsのインストーラがそんな初歩的なミスをするとは思えないし、実際調べてみたら、4Kアライメントからずれているということはなかった。

3つ目は、そもそもSATA2規格のマザーボードなのでSATA3として使えるコネクタは存在しない。SATA2規格だとしても遅すぎるレベル。

4つ目は、ノートPCなのでサードパーティ製のSATAコントローラを積む余地がないし、積む必要もない。念のため調べてみたけど、Intel製のSATAコントローラとして認識されていた。

5つ目は、可能性としてはなくはないけど、ノートPCなので交換用パーツがなく、リボン・ケーブルのため汎用品がない。修理するためには同型のVAIOのジャンク品でも購入してくるしかなく、現実的でない。

最後に残るのが6つ目のSSDの故障だけど、わざわざ新品のSSDを買い直してまでパフォーマンスを改善したいとは思わない。そもそも、実用レベルとは言いにくいノートPCの再生なので、Core2 Duoで頑張らなければならない理由も特にない。

このような低速状態だと、ちょっとしたユーティリティ・ソフトウェアやWindows Updateをインストールするにしても気が遠くなるような時間がかかるのので、実用に堪えない。

再分解・復旧

SSDが突然低速化してしまったので、ガッカリして、なかば捨て鉢になっていたけれど、凝り性な性分なので、どうにも諦めがつかない。まず、イベントビューアで何かエラーが出ていないか確認する。すると、「ソース」が「disk」の蘭に「イベントID」が「153」の警告が山ほど出ている。それこそ、毎秒から数秒に1回の割合で。これは、I/Oがうまくいかなかったのでやり直しをしているイベントらしい。これは怪しい。

ソース名とイベントIDをもとにしてネットを調べてみる。あまり期待はしていなかったけど、まぁ、大体Windowsの設定の問題とか、SSDに換装した後にレジストリをいじる必要があるとか、SSDやHDDの寿命とか、故障(初期不良)とか、どうも腑に落ちない結論ばかり。ついこの間まで280MB/sの読み込み速度が出ていた新品のSSDが急に遅くなったのだから、設定とかレジストリをいじったところでどうにかなる問題とは思えない。

いくつか記事を拾っていったら、面白い記事に行き当たった。SSDではなくてHDDの話だったけど、同時期に買った2基のHDDのうちの片方が、やはり153のイベントIDの警告を吐き続けていて、データの書き込みが一向に進まないというものだった。で、どう解決したかというと、SATAコネクタに「接点復活スプレー」なる薬剤を塗ってHDDそのものは交換せずに見事に復旧したというのだ。

これは試してみる価値がある。そのスプレーも数百円で買える一般的なものだ。潤滑剤や錆取り剤などで有名な呉工業が作っているというのだから、眉唾物ではなさそうだ。Amazonだと少し高いけど、家電量販店やホームセンターなどなら安く入手できる。

接点復活スプレーを買ってきたので、早速VAIOを再び分解してみたら…。なんと、次の画像のようにSATAコネクタが外れかかっているではないか(青い矢印のところ)。

こんな事態になっているのであれば、書き込みが異常に遅くなるのも無理はない。SATAは全二重通信で、送信(読み込み/リード)と受信(書き込み/ライト)が独立している。考えてみれば当たり前の話で、書き込みだけ極端に遅いという時点で気付くべきだった。むしろ、コネクタが斜め差しの状態になっていながら、隣のピン同士が短絡してSSDが本格的に故障するような事態にならなかったのが奇跡なくらいだ。こんな状態で、よくWindows 10をインストールできたものだ。

思った以上にMicroSATAのコネクタは嵌合が弱く、2.5インチや3.5インチのSATAコネクタと同じと思ってはいけないようだ。接点復活剤を使うまでもなく、コネクタをちゃんと嵌め、今度はSSDがPCの内部で動いてコネクタが緩まないように緩衝材を詰めるのがメインの作業に変わった。

本当はクッション・テープなどを貼って綺麗に作るのがいいんだろうけど、本体のカバーを開けてみるまでこういう事態とは思っていなかったので手持ちがない。そこで応急処置として、梱包に使われていた段ボールをドライブのケージの大きさに合わせて短冊状に切り、5枚ほど重ねてテープで巻いたものを詰めた。5枚も重ねると意外に弾力があって、即席の板バネのようなものになった。

もちろん、応急処置なので、段ボールを使うのはおすすめしない。一般的なハサミやカッターナイフで切れるため、加工が簡単で大きさを調節しやすいのが最大の長所。練習もかねてどのくらいの大きさの緩衝材を用意すればいいのかの目安にする分にはいいと思う。ノートPCの中はかなり熱くなるので、難燃性の緩衝材を使ったほうが無難だろう。紙でも、それも段ボールとなればそう簡単には燃えないんだけど、火災などの原因になっても責任は持てない。

せっかく買ってきたし、接点の防錆効果などもあるので、接点復活スプレーの薬剤も綿棒の先につけてコネクタに塗っておく。どういう理屈かはいまひとつ理解できなかったんだけど、接点復活剤は導電体ではなく、接点の汚れを落とし、人間の目には見えない微細な凹凸がある接点の面積を増やして通電できる場所を増やすというもののようだ。なので、絶縁体をまたいでコネクタのピンにべったり塗ってしまっても薬剤を通じて短絡してしまうといった問題は起こらないそうだ。

カバーを閉じ、バッテリーを接続して起動してみる。CrystalDiskMarkで計測してみると、SSD換装当初と同じくらいまでリード/ライトの速度が回復した。一度悔しい気持ちを味わっているせいか、換装に成功した時よりも、トラブルを解決できた時のほうが気分がいい。

ノートPCというのは、思った以上に過酷な環境で使われているものだということが身に沁みて理解できた。そんなに乱暴に扱ったつもりはないけど、動かして使っていると通常の運用でも内部の部品に相当な衝撃や力がかかっていると今なら想像できる。ましてや、もともと1.8インチHDDが入っていたところに設計よりも遥かに小さい物を入れて詰め物もちゃんとしなかったのだから想定外の事態は当然起こりうる。

何はともあれ、SSDは本来の性能を取り戻した。SSDが故障していないか確認するために、mSATAを9.5mm厚の2.5インチSSDサイズのSATAに変換するアダプタも買ってきたんだけど、無駄になってしまった。むしろ、こちらのほうが高くついてしまった。本当にVAIOを退役させる時にSSDを救出するのに役に立つ、かもしれない(忘れなければ)。

関連記事

参考記事